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On Interference-Rejection Using Riemannian
Geometry for Direction of Arrival Estimation
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Abstract—We consider the problem of estimating the direction
of arrival of desired acoustic sources in the presence of multiple
acoustic interference sources. All the sources are located in
noisy and reverberant environments and are received by a
microphone array. We propose a new approach for designing
beamformers and DoA estimation methods based on the Rie-
mannian geometry of the manifold of Hermitian positive definite
matrices. Specifically, we show theoretically that incorporating
the Riemannian mean of the spatial correlation matrices into
frequently-used beamformers gives rise to spatial spectra that
reject the directions of interference sources and result in a higher
signal-to-interference ratio. We experimentally demonstrate the
advantages of our approach in designing several beamformers
and a recent DoA estimation method in the presence of simulta-
neously active multiple interference sources.

Index Terms—Array signal processing, direction of arrival
estimation, interference rejection, Hermitian positive definite
matrices, Riemannian geometry.

I. INTRODUCTION

ESTIMATION of the direction of arrival (DoA) of an
acoustic source is prevalent in signal processing; it is an

important step in many tasks, such as source localization, beam-
forming, source separation, spectrum sensing, and speech en-
hancement [1], to name but a few. Despite the large research
attention it has drawn in the past decades, acoustic DoA estima-
tion is still considered a challenging open problem. Especially
in noisy and reverberant environments and in the presence of
interference sources, it continues to be an active research field.

Acoustic source localization, and particularly DoA estima-
tion, are often addressed using beamforming [2]. Many beam-
formers have been proposed over the years for these tasks. One
class of beamformers is based on the steered response power
(SRP) of a beamformer output. For example, considering the
maximum likelihood criterion for a single source, the output
power of the beamformer from all the directions is computed,
and the DoA is identified as the direction with the maximal
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power [3], [4], [5], [6]. Another example is the Minimum Vari-
ance Distortionless Response (MVDR) beamformer [7], [8],
[9], which was first introduced by Capon [10]. The MVDR
beamformer extracts the DoA of each of the existing sources,
maintaining a unit gain at their direction while minimizing the
response from other directions. An important generalization of
the MVDR beamformer is the Linearly Constrained Minimum
Variance (LCMV) beamformer [11], obtained by minimizing
the output power under multiple linear constraints, and can
be used for DoA estimation as well [12]. Another line of
beamformers is derived based on a subspace approach, i.e.,
by identifying the subspace of the desired sources, which is
assumed to contain only a small portion of the noise and the
interference sources. A prominent subspace method, which is
also used for DoA estimation, is MUltiple Signal Classification
(MUSIC) [13], [14], [15], [16].

A notable algorithm for acoustic source localization is the
Steered-Response Power Phase Transform (SRP-PHAT) algo-
rithm proposed in [17]. In SRP-PHAT, the phase transform
is used to normalize the different frequencies, such that only
their phase information is considered. This allows for the fu-
sion of the different frequencies when considering a broadband
signal. A popular time-domain implementation of the SRP-
PHAT is the generalized cross-correlation with phase transform
(GCC-PHAT) proposed in [18], which normalizes each cross-
correlation using the phase transform. In recent years, sparse
signal recovery methods have been proposed for DoA estima-
tion [19], [20], [21]. In particular, one approach for solving
the sparse recovery problem is the sparse Bayesian learning
approach proposed in [22], which was adopted for the DoA
estimation problem as well, for example in [23], [24].

In this paper, we consider DoA estimation in a reverberant
enclosure consisting of desired sources along with interference
sources. We assume that the desired sources are constantly
active, whereas the interference sources are only intermittently
active. The number of sources, their locations, and their times
of activity are all unknown. Consequently, their identification
as desired or interference is unknown as well. The power of
the different sources is also unknown, and the interference
sources could, in fact, be stronger than the desired sources with
overlapping activity periods. Our goal is to estimate the DoA of
the desired sources in the presence of possibly simultaneously
active, multiple interference sources.

This setting poses a major challenge to the common prac-
tice in existing methods that rely on maximal power because
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estimating the DoA of the strongest sources might result in
distinct beams in the direction of the interference sources rather
than the desired sources. Furthermore, these beams could mask
the beams pointing at the directions of desired sources.

We address this challenge from a geometric standpoint. Our
approach relies on the observation that the frequently-used
beamformers implicitly consider Euclidean geometry when
processing sample correlation matrices. Therefore, since the
sample correlation matrices are Hermitian Positive Definite
(HPD) matrices, important geometric information is not fully
utilized. Instead, we propose a new approach for beamforming
design that is based on the Riemannian geometry of the mani-
fold of HPD matrices [25], [26], [27]. Concretely, we analyze
the received signal in short time windows and consider the Rie-
mannian mean [25] of the sample correlation matrices in these
windows. Then, we leverage particular spectral properties of the
Riemannian mean. In [28], it was shown that the Riemannian
mean of HPD matrices preserves shared spectral components
and attenuates unshared spectral components. Consequently,
the continual activity of the desired sources and the intermittent
activity of the interference sources enable us to associate de-
sired sources with shared spectral components and interference
sources with unshared spectral components. By combining the
above, we show that the incorporation of the Riemannian mean
into the beamformer design leads to interference rejection, i.e.,
gives rise to a spatial spectrum that implicitly rejects the beams
pointing at the interference sources and preserves the beams
pointing at the desired sources. The resulting spectrum is, in
turn, used for the estimation of the DoA of the desired sources.
Importantly, our approach is applicable to a large number of
beamformers used for DoA estimation.

By incorporating our Riemannian approach, we present
new implementations of several beamformers: the Delay and
Sum (DS) beamformer, subspace-based beamformers, and the
MVDR beamformer, as well as the Bayesian learning method
for DoA estimation proposed in [23].

The main contributions of this article are as follows. First,
we observe that despite being commonly-used in array process-
ing in general, and for DoA estimation in particular, the HPD
structure of the signal correlation matrices is not fully exploited.
Here, we identify that by dividing the computation of the sample
correlation matrix into short-time segments, it can be viewed
as the Euclidean mean of the sample correlation matrices of
the segments. This observation enables the introduction of the
Riemannian geometry of HPD matrices, and in particular, it
allows us to introduce a rather simple approach that promotes
the use of the Riemannian mean instead of the Euclidean mean
and to show its multiple merits. Second, we demonstrate that the
proposed approach can naturally be applied to a broad range of
DoA estimation methods that use the signal sample correlation
matrix, and we show that it is computationally efficient in the
sense that it typically does not change the order of the compu-
tational complexity of the DoA estimation methods. Third, we
theoretically analyze the proposed approach and show that in
the case of the DS beamformer, it results in higher SIR values
that lead to better DoA estimation accuracy. In addition, we
present a noise sensitivity analysis. Fourth, we present empirical

results in adverse conditions that include simultaneously active
multiple interference sources. We showcase the applicability
of our approach to both classical and recent DoA estimation
methods and demonstrate that the obtained performance im-
provement is by a large margin.

We conclude the introduction with three remarks. First, a
similar setting to ours, consisting of desired sources accompa-
nied by interference sources, was considered in [29] and [30]
but in the context of signal enhancement. In [29], a single
desired source and a single interference source were considered,
and in [30], multiple desired sources and multiple interfer-
ence sources were considered. However, in both works, it was
assumed that there is at least one segment for each source,
desired or interference, in which it is the only active source.
Furthermore, in [30], the number of the desired sources and
their activity patterns were assumed to be known. Second, in
the context of radar, the Riemannian geometry of the Toeplitz
HPD matrices was used in [31] and [32] for target detection by
comparing Riemannian distances to a threshold. In the radar
settings, [33] estimated the correlation matrix as a linear com-
bination of correlation matrices, with weights that are based on
the Riemannian distance. Third, in this article, we demonstrate
the Riemannian approach for designing beamformers that re-
ject interference sources for DoA estimation. However, other
applications, e.g., signal enhancement, could also benefit from
spectra that reject interference sources.

This paper is organized as follows. In Section II, we present
a brief background on the HPD manifold. In Section III, we
formulate the problem and the setting. In Section IV we de-
scribe the proposed approach and present the algorithm for DoA
estimation. In Section V, we provide a theoretical analysis of
the proposed approach for the DS beamformer. In Section VI,
extensions of the approach to other DoA estimation methods
are presented. Section VII shows simulation results demonstrat-
ing our Riemannian approach. Lastly, we conclude the work
in Section VIII.

II. BACKGROUND ON THE HPD MANIFOLD

An HPD matrix, Γ ∈ C
n×n, is a Hermitian matrix, i.e. Γ=

ΓH , where ΓH is the conjugate transpose of Γ, whose real
eigenvalues are strictly positive. Associating the space of HPD
matrices with the Affine Invariant metric [34] constitutes a
Riemannian manifold, M. The distance between two matrices
Γ1 and Γ2, induced by the Affine Invariant metric, is given by

d2R(Γ1,Γ2) =
∥
∥
∥ log

(

Γ
− 1

2
2 Γ1Γ

− 1
2

2

)∥
∥
∥

2

F
, (1)

where ‖ · ‖F is the Frobenius norm.
The tangent space to a point on a manifold Γ ∈M is a

vector space that can be viewed as a local approximation of the
manifold around Γ. For the HPD manifold, the tangent space
around each Γ ∈M is the vector space of Hermitian matrices
of dimensions n× n.

The Riemannian mean, ΓR, of a set of point {Γi|Γi ∈M} is
defined by the Fréchet mean as the point minimizing the sum
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Algorithm 1 Riemannian mean for the HPD manifold [36]

Input: a set of K HPD matrices {Γj}Kj=1

Output: the Riemannian mean ΓR

1: Compute ΓR = 1
K

∑K
j=1 Γj

2: do
1) Compute the Euclidean mean in the tangent plane:

P = 1
K

∑K
j=1 LogΓR

(Γj)
2) Update ΓR = ExpΓR

(P )
3) Stop if ‖P‖F < ε

of the distances from all the points in the set as follows

ΓR ≡ argmin
Γ∈M

∑

i

d2R(Γ,Γi). (2)

In general, there is no closed-form expression for the Rie-
mannian mean of more than two matrices, and a solution
can be found using an iterative procedure [35], described
in Algorithm 1.

The computation of the Riemannian mean requires two maps.
The Logarithm map, which maps an HPD matrix Γi ∈M to the
tangent space of the HPD manifold at Γ, is given by

LogΓ(Γi) = Γ
1
2 log(Γ− 1

2ΓiΓ
− 1

2 )Γ
1
2 . (3)

The Exponential map, which maps a vector T from the tangent
space at Γ, is given by

ExpΓ(T ) = Γ
1
2 exp(Γ− 1

2TΓ− 1
2 )Γ

1
2 . (4)

We note that there exists an efficient iterative estimator for
the Riemannian mean [37]. It is described in Appendix C.
A discussion about the choice of the Affine Invariant metric
appears in Appendix D.

III. PROBLEM FORMULATION

We consider the problem of localizing ND desired sources
in the presence of NI interference sources. All the sources are
static and located in a reverberant environment. The signals
are received at a noisy microphone array of M microphones,
which are positioned in known, but possibly arbitrary, positions.
The acoustic environment between each source and each micro-
phone is modeled by the Acoustic Impulse Response (AIR). The
signal at the mth microphone, considering a far-field setting, is
given by

zm(n) =

ND∑

j=1

sdj (n) ∗ hd
jm(n) +

NI∑

j=1

sij(n) ∗ hi
jm(n)

+ vm(n), (5)

where sdj (n) is the jth desired source, sij(n) is the jth inter-
ference source, and vm(n) is the mth microphone noise. We
denote by hd

jm(n) the AIR between the mth microphone and
the jth desired source. Similarly, we denote by hi

jm(n) the AIR
between the mth microphone and the jth interference source.

The sources are characterized by their activation times. The
desired sources are active during the entire interval. In contrast,
the interference sources are only partially active, namely active

during segments of the interval. We emphasize that albeit we
consider intermittent interference sources, longer signals might
consist of a larger number of interference sources in addition
to more occurrences of active interference sources. We do not
assume there is a segment with only the desired source. Longer
intervals do not necessarily increase the probability of such a
segment since new interference sources could emerge in such
a scenario. Consequently, even a long signal still poses a sig-
nificant challenge to the DoA estimation. Additionally, we as-
sume that the desired sources, the interference sources, and the
noise are all uncorrelated. The noise is assumed to be spatially
white. We note that these assumptions are made for simplicity.
Empirically, the proposed approach leads to superior results
for correlated signals and for noise with arbitrary covariance
matrix as well.

The received signal is processed using the Short-Time
Fourier Transform (STFT). We denote by sdj (l, k) the STFT at
the lth window and the kth frequency of sdj (n). The notation for
sij(l, k), h

d
jm(l, k), hi

jm(l, k), and vm(l, k) follows similarly.
Then, the STFT at the lth window and the kth frequency of the
received signal is given by

zm(l, k) =

ND∑

j=1

sdj (l, k)h
d
jm(l, k) +

NI∑

j=1

sij(l, k)h
i
jm(l, k)

+ vm(l, k), (6)

where we assume the length of the window is much larger than
the AIR length.

We stack the received signals, {zm(l, k)}m, from all the
microphones to obtain a column vector z(l, k) ∈ C

M×1

z(l, k) = [z1(l, k) ... zM (l, k)]�. (7)

Its explicit expression is

z(l, k) =Hd(l, k)sd(l, k) +Hi(l, k)si(l, k) + v(l, k), (8)

where sd(l, k) and si(l, k) denote the stacked STFT repre-
sentations of the desired sources and the interference sources,
respectively, and are given by

sd(l, k) = [sd1(l, k) ... sdND
(l, k)]�

si(l, k) = [si1(l, k) ... siNI
(l, k)]�,

(9)

and the noise term is

v(l, k) = [v1(l, k) ... vM (l, k)]�. (10)

The Acoustic Transfer Functions (ATFs) from the jth de-
sired source and the jth interference source to the microphone
array are

hd
j (l, k) = [hd

j1(l, k) ... hd
jM (l, k)]� j = 1, ..., ND

hi
j(l, k) = [hi

j1(l, k) ... hi
jM (l, k)]� j = 1, ..., NI,

(11)

and in a matrix form

Hd(l, k) = [hd
1(l, k) ... hd

ND
(l, k)]

Hi(l, k) = [hi
1(l, k) ... hi

NI
(l, k)].

(12)

Henceforth, we focus on a single frequency bin and omit the
frequency index. Throughout the article, we refer to z(l) as the
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received signal. Since all the sources are static the ATFs do
not change over time, so in the following, we omit their STFT
window index l.

In this work, we focus on a single frequency to demonstrate
the Riemannian approach, which is suitable for narrowband
signals. For broadband signals, this is the formulation of only
a single frequency. We note that the fusion of the different fre-
quencies is of great importance, and normalization techniques
for the different beamformers have been proposed [38] and can
be applied after our method.

Our goal is to estimate the direction to the desired sources,
given z(l), l = 1, . . . , LSTFT, where LSTFT is the number of
STFT windows. The main challenge is the existence of inter-
ference sources, positioned at unknown locations with possibly
high signal power.

IV. PROPOSED APPROACH

Typically, the DoA estimation of a desired source is based
on the output of a beamformer. In this section, we present the
proposed approach applied to the Delay-and-Sum (DS) beam-
former. In Section VI, we extend the proposed approach to other
DoA estimation methods.

We consider arbitrary indexing of the microphones in the
array and designate the first microphone as the reference mi-
crophone. Let d(θ) denote the steering vector of the array to
direction θ relative to the first (reference) microphone, which
is given by

d(θ) = [1, ejφ2(θ), ..., ejφM (θ)]�, (13)

where φm(θ) is the phase of the received signal at the mth mi-
crophone with respect to the first microphone. For example, for
a uniform linear array and the typical microphone indexing, we
have φm(θ) = 2π ·m δ

λ sin θ, where λ is the wavelength of the
received signal, and δ is the distance between the microphones.

The SRP of the DS beamformer is given by

PDS(θ;Γ) = dH(θ)Γd(θ), (14)

where

Γ= E[z(l)zH(l)] (15)

is the population covariance matrix. Since the desired source
is constantly active and assumed to be at a fixed location dur-
ing the entire interval, we estimate the population correlation
matrix Γ using the sample correlation matrix Γ̂ by averag-
ing z(l)zH(l) over multiple STFT windows. We divide the
STFT of the signal into Ls disjoint segments, each consisting
of Lw consecutive STFT windows, i.e., LSTFT = Ls · Lw (for
more details regarding the partitioning see Section V-D). Then,
the sample correlation matrix over each segment is computed
as follows

Γ̂i =
1

Lw

i·Lw∑

l=(i−1)·Lw+1

z(l)zH(l), (16)

where i is the segment index. To obtain a full rank correlation
matrix, the number of STFT windows is set to be larger than

Algorithm 2 Direction estimation in the presence of multiple
interference sources
Input: the received signal in the STFT domain {z(l)}LSTFT

l=1

Output: the estimated direction of the desired source θ̂

1: Divide {z(l)}LSTFT
l=1 into Ls consecutive segments

2: For each segment i, compute the sample correlation matrix
Γ̂i using (16)

3: Compute ΓR of the set {Γ̂i}LS
i=1 using Algorithm 1

4: Compute PDS(θ;ΓR) according to (18)
5: Return θ̂ = argmaxθPDS(θ;ΓR)

the dimension of the matrix (the number of microphones),
i.e., Lw ≥M .

The incorporation of the Riemannian geometry is realized
by viewing each matrix Γ̂i as a point on the HPD manifold
[34] and considering their Riemannian mean, denoted as Γ̂R and
given by

Γ̂R = argmin
Γ∈M

Ls∑

i=1

d2R(Γ, Γ̂i). (17)

In general, there is no closed-form solution to (17) on the
HPD manifold for more than two points [35]. Therefore,
Algorithm 1 proposed in [36] is used to compute the Rieman-
nian mean of the Ls correlation matrices.

Once Γ̂R is at hand, the SRP of the DS beamformer,
PDS(θ; Γ̂R), is computed by

PDS(θ; Γ̂R) = dH(θ)Γ̂Rd(θ). (18)

In the case of a single desired source and assuming the direct
path is dominant in the AIR, the direction to it is set as the
direction achieving the maximum value of the SRP of the DS
beamformer, i.e.,

θ̂ = argmax
θ

PDS(θ; Γ̂R). (19)

We note that (19) is used since the DoA estimation is based on
a single STFT frequency bin. In the case of ND desired sources,
the ND directions are set according to the ND strongest lobes in
the SRP. The algorithm for a single desired source is described
in Algorithm 2.

As a baseline, we consider the common practice of the com-
putation of the SRP of the DS beamformer, which is typically
based on the sample correlation matrix over the entire interval,
i.e., PDS(θ; Γ̂E), where

Γ̂E =
1

LSTFT

LSTFT∑

l=1

z(l)zH(l). (20)

We observe that computing the Euclidean mean of the sample
correlation matrices per segment, {Γ̂i}Ls

i=1, results in Γ̂E in (20).
So, Γ̂E in (20) is the Euclidean counterpart of Γ̂R, the sample
correlation matrix resulting from the Riemannian approach.

We will show that our Riemannian approach exploits the
assumption that the desired source is constantly active and at
a fixed location, whereas the interference sources are inter-
mittent. More specifically, we will show both theoretically in
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Section V and empirically in Section VII that the Riemannian
mean attenuates the intermittent interferences while preserving
the constantly active sources. In contrast, the standard Eu-
clidean mean accumulates all the sources, and as a result, the
main lobe could deviate from the direction of a desired source,
and even focus on an interference source.

We show in Section V and Section VII that our pro-
posed approach results in a SRP that rejects the interference
sources, allowing the beamformer to extract the DoA of the
desired sources.

We remark that the proposed approach only requires that the
desired sources are the only sources active during the entire
interval. The rank of the signal matrix is not known nor needs to
be estimated. The number of interference sources is unknown
as well. This is by virtue of the Riemannian mean. Unlike other
works (e.g. [30]), we do not need to know the activation times
of each interference, nor the number of interference sources.
Furthermore, we do not assume that there exists a segment, at
which a desired source is the only active source, namely, it could
always be accompanied by interference sources.

In terms of complexity, the Riemannian approach requires the
computation of the Riemannian mean of the correlation matri-
ces, which is more complex than the Euclidean mean. However,
the excess complexity depends on the number of microphones,
which is typically not high compared to the complexity of
computing the correlation matrix which depends on the num-
ber of signal samples. Consequently, the excess complexity is
negligible. In particular, following the iterative computation of
the Riemannian mean in Algorithm 3 in Appendix C, at each
iteration, the computation involves the eigenvalue decomposi-
tion of two complex matrices of dimension M ×M , which is
O(M3), and the computation of 6 matrix products with the
complexity of O(M2). So, at each iteration, the overall excess
complexity is O(M3). We recall that for N samples, the com-
plexity of computing the sample correlation matrix is O(M2N)
which is much larger than O(M3) since typically N >>M .
Empirically, we found that Algorithm 3 converges very quickly
after several iterations. To summarize, the proposed approach
leads to improved performance with only negligible additional
computational cost. In Appendix C, we present the estimator
along with an implementation for the streaming data setting.

To evaluate the performance of the proposed approach, we
define the output Signal to Interference Ratio (SIR) as follows:

SIRj(Γ̂) =
P (θd; Γ̂)

P (θij ; Γ̂)
, (21)

where P (θ; Γ̂) is the SRP computed using the sample corre-
lation matrix Γ̂, θd is the direction of a desired source, and
θij is the direction of the jth interference. When using the DS
beamformer, the output SIR becomes

SIRj(Γ̂) =
dH(θd)Γ̂d(θd)

dH(θij)Γ̂d(θ
i
j)

. (22)

This measure of performance is used because the main chal-
lenge in this setting is the presence of interference sources rather
than the microphone noise.

V. ANALYSIS

In this section, we analyze the proposed approach which
is based on Riemannian geometry and compare it to its Eu-
clidean counterpart. The proofs of the statements appear in the
Supplementary Material (SM). In the analysis, we consider the
population correlation matrix of the received signal, neglecting
the estimation errors stemming from the finite sample in a
segment. We note that sections IV, VI, and VII consider the
sample correlation matrices, and only Section V considers the
population correlation matrix.

We begin with a short derivation, demonstrating that Rieman-
nian geometry preserves better the desired source subspace in
comparison to Euclidean geometry. Consider a single desired
source and assume its ATF, denoted by h0, is a common eigen-
vector of all the correlation matrices per segment associated
with the same eigenvalue (this assumption is made formal in
Assumption 1 in the sequel). In this case, according to Lemma
2 (see Appendix D), h0 is an eigenvector of both means and it is
associated with the same eigenvalue, namely λ0(ΓR) = λ0(ΓE),
where λi(Γ) is the ith eigenvalue of Γ. In addition, all other
eigenvectors span the interference and noise subspace. Under
the aforementioned assumption, and by the following known
property of the Riemannian mean [39]

ΓR � ΓE. (23)

We get that

λ0(ΓR)
∑M−1

i=1 λi(ΓR)
≥ λ0(ΓE)

∑M−1
i=1 λi(ΓE)

, (24)

due to the equality of the numerators and (23). The inequality in
(24) implies that the desired source subspace is more dominant
than the subspace of the interference and noise in the Rieman-
nian mean compared to the Euclidean mean.

In the remainder of this section, we extend this analysis and
present additional results.

A. Assumptions

To make the analysis tractable, we consider a single desired
source and multiple interference sources. Therefore, we sim-
plify the notations by omitting the superscripts (·)i and (·)d
associated with the interference sources and the desired sources
and setting the index of the desired source to 0.

For the purpose of analysis, we make the following
assumptions.

Assumption 1: hH
0 hj = 0, ∀j = 1, ..., NI.

Assumption 2: hH
l hj = 0, ∀l 	= j.

It follows from Assumption 1 and Assumption 2 that the
ATFs, associated with the desired source and the interference
sources are all uncorrelated. These are common assumptions,
e.g., see [30]. The assumptions are made only for analysis pur-
poses, whereas in the experimental results, we consider acoustic
signals in a reverberant environment without any assumptions.
We note that we do not assume there exists a segment at which
only one of the sources is active (e.g., as in [30]). In case an
interference source is only partially active during a segment, we
consider it active during the entire segment.
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The population correlation matrix of the ith segment is
given by

Γi = σ2
0h0h

H
0 +HΛiH

H + σ2
vIM×M , (25)

where σ2
0 and σ2

v are the power of the desired source and
the power of the noise, respectively. The diagonal matrix Λi

captures the signal power of the interference sources and is
given by:

Λi = diag
(

σ2
1(i) · Ii∈L1

, ... , σ2
NI
(i) · Ii∈LNI

)

, (26)

where H =Hi(l, k) due to the omission of the indices
and σ2

j (i) = E[|sj(n)|2|n ∈ ith segment] is the expected signal
power of the jth interference source at the ith segment, Lj is the
set of segments at which the jth interference source is active,
and Ii∈Lj

is an indicator function, attaining the value of 1 when
the jth interference is active during the ith segment and 0 other-
wise. We denote by τj =

|Lj |
Ls

the relative number of segments
during which the jth interference source is active. We assume
the same expected power at all the segments in the interval, i.e.,
σ2
j (i) = σ2

j for all j = 1, . . . , NI and i= 1, . . . , Ls.
We continue with defining the Signal to Noise Ratio (SNR)

at the mth microphone as

SNRm =
σ2
0 |h0[m]|2

σ2
v

, (27)

where |h0[m]|2 is the attenuation of the signal due to the acous-
tic channel between the desired source and themth microphone.
Since we focus on a single frequency bin, (27) is the narrow-
band SNR.

To capture the correlation between the steering vectors and
the ATFs, we define

ρrs =
|〈dr,hs〉|2

‖dr‖2 · ‖hs‖2
=

|〈dr,hs〉|2
M‖hs‖2

, (28)

where r, s= 0, 1, 2, ..., NI, indicating the desired source or an
interference source.

We conclude the preliminaries of the analysis with two ad-
ditional assumptions.

Assumption 3: ρrr is fixed ∀r, and ρrs is fixed ∀r 	= s.
Assumption 3 implies that the correlation between the ATFs

and the steering vectors depends only on whether they are
associated with the same source or not. Following Assumption
3, henceforth we denote κ= ρrr and ρ= ρrs for r 	= s.

Assumption 4: κ > ρ.
Assumption 4 is typically made in the context of source local-
ization. It implies that the correlation between a steering vector
to a source and the ATF associated with that source is higher
than the correlation between a steering vector to a source and
the ATF associated with a different source.

B. Main Results

Our first result states that the output SIR (22) of the
Riemannian-based DS beamformer is higher than the output
SIR of the Euclidean-based DS beamformer.

Proposition 1: For every interference source j, the following
holds

SIRj(ΓR)> SIRj(ΓE), (29)

for any number of microphones in the array.
Examining the dependency of the output SIR on the noise

power σ2
v leads to the following result.

Proposition 2: If

σ2
0‖h0‖2 ≥ σ2

j τj‖hj‖2, ∀j, (30)

then

∂

∂σ2
v

SIRj(ΓR )<
∂

∂σ2
v

SIRj(ΓE)< 0. (31)

Namely, the lower the noise power is the higher the output
SIR is, and the improvement in SIRj(ΓR) is greater than the
improvement in SIRj(ΓE). Since we established that the Rie-
mannian approach is better than the Euclidean one in terms of
the SIR in Proposition 1, Proposition 2 implies that increasing
the SNR further increases the gap between the two approaches.
Nevertheless, it also indicates that the performance of the Rie-
mannian approach in terms of the SIR is more sensitive to noise
compared to the Euclidean counterpart. Note that this statement
holds under condition (30), which implies that the received
power of the desired source is stronger than the received power
of each interference source, considering the attenuation stem-
ming from the activity duration. See more details in Section I-C
in the SM.

The proofs of Proposition 1 and Proposition 2 rely on the
following lemma, which is important in its own right.

Lemma 1: The Riemannian or the Euclidean mean of the
population correlation matrices of the segments (25) over the
entire interval can be written in the same parametric form as

Γ= σ2
0h0h

H
0 +

NI∑

j=1

μ2
jhjh

H
j + σ2

vI. (32)

The Riemannian mean ΓR is obtained by setting the parameters
μj to

μ2
j =

(σ2
j ‖hj‖2 + σ2

v)
τj (σ2

v)
1−τj − σ2

v

‖hj‖2
, (33)

and the Euclidean mean ΓE is obtained by setting

μ2
j = σ2

j τj . (34)

We note that only assumptions 1 and 2 are necessary for
this lemma to hold. In addition, we note that if the interfer-
ence sources are always active, i.e., |Lj |= Ls, ∀j, it holds that
ΓR = ΓE.

Lemma 1 shows that both ΓR and ΓE, i.e., the population
correlation matrices of the segments in (25), can be decom-
posed into three terms associated with the desired source, the
interference sources, and the noise. By (32), the desired source
term and the noise term (the first and third terms) are the same
in both the Riemannian and the Euclidean means. In contrast,
the coefficients in (33) and (34) imply that the amplitude of the
interference sources term (the second term) depends on the used



266 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 72, 2024

geometry. By further inspecting the expressions of {μ2
j}, we see

that the interference attenuation using the Riemannian geometry
in (33) is more involved than its Euclidean counterpart in (34),
depending not only on the interference power and the duration
of activity but also on the noise power and the correspon-
ding ATF.

Furthermore, considering μj in (34), the condition (30) could
be viewed as the dominance of the desired source after the atten-
uation of the Euclidean mean. Discussion about the condition
(30) for μj in the Riemannian case in (33) appears in Section
I-C in the SM.

Next, we examine a family of correlation matrices that per-
tain to the same parametric form as in (32) in Lemma 1, i.e.,

Γa = h0h
H
0 +

NI∑

j=1

ajhjh
H
j + σ2

vI, (35)

for some coefficients a= [a1, a2, ..., aNI ]. Without loss of gen-
erality, we set the coefficient of h0h

H
0 to 1. We note that Γa is

in accordance with (25).
For any j, we have that

Γopt ≡ argmax
Γa

SIRj(Γa) = h0h
H
0 + σ2

vI, (36)

where a= 0. Consequently,

SIRj(Γopt) =
dH
0 (h0h

H
0 + σ2

vI)d0

dH
j (h0h

H
0 + σ2

vI)dj

. (37)

Considering vanishing noise, i.e., when the noise power ap-
proaches zero, the following result stems from Lemma 1 by
considering the limit limσ2

v→0 μ
2
j = 0 using (33).

Corollary 1:

lim
σ2
v→0

ΓR = Γopt. (38)

According to Corollary 1, the Riemannian mean approaches
the optimal correlation matrix as the noise becomes negligi-
ble. By adding a condition on the presence of the interference
sources, from Lemma 1 and (33) we also have the following.

Corollary 2: For any interference source j, if τj < 1
2 , then

lim
σ2
j→∞,σ2

v→0
ΓR = Γopt. (39)

Additionally, if τj < 1
2 for all j, then

lim
σ2
j→∞∀j=1,...,NI,σ2

v→0
ΓR = Γopt. (40)

Corollary 2 implies that for vanishing noise, even when
all the interference sources have infinite power, the desired
source is still the dominant source in the SRP of the DS beam-
former using the Riemannian mean. Following (37) it holds
that limσ2

j→∞,σ2
v→0 SIRj(Γopt) =

κ
ρ > 1 for all j. For the Eu-

clidean mean it holds that limσ2
j→∞,σ2

v→0 SIRj(ΓE) =
ρ
κ < 1<

κ
ρ = limσ2

j→∞,σ2
v→0 SIRj(Γopt) for all j. Note that we consider

noise power approaching zero rather than strictly zero, because
when σ2

v = 0, the correlation matrix is singular, and therefore,
lies outside the HPD manifold. Additionally, in practice, noise
is always present.

To illustrate the obtained expressions for the Riemannian and
the Euclidean SIR, we present the following simple example.

Example 1: Consider an anechoic environment without at-
tenuation, for which κ= 1 and ρ= 0, and two interference
sources. Each interference source is active at a different seg-
ment, i.e., Ls = 2, L1 = {1}, and L2 = {2}. All the sources
have the same power. In this setting, for the Riemannian
geometry, we have

SIRj(ΓR) =

√

M

σ2
v

+ 1, (41)

and for the Euclidean geometry, we have:

SIR(ΓE) =
2(M + σ2

v)

M + 2σ2
v

. (42)

Therefore, in the limit of σ2
v → 0, or M →∞, we have

SIR(ΓR)→∞, whereas SIR(ΓE)≈ 2.
We conclude this analysis with a few remarks. First, we

note that ΓE leads to the ML estimator by taking θ̂0 =
argmaxθ PDS(θ;ΓE) for the interference-free setting. In this
case, the Riemannian mean coincides with the Euclidean mean,
i.e., the proposed method coincides with the ML estimator.
The main advantage of the proposed method lies in attenuating
the interference sources while preserving the desired source.
Second, under assumptions 1 and 2, the number of sources,
both desired and interference, are limited by the number of mi-
crophones in the array, i.e., NI +ND <M . In Section V-C we
alleviate Assumption 2, which removes this restriction. Third,
following the same techniques in the proof of Proposition 1 and
Proposition 2, similar results are derived for an alternative defi-
nition of the SIR: SIRtot(Γ)≡ dH

0 Γd0
∑NI

j=1 dH
j Γdj

, which captures the

ratio between the desired source and the sum of all interference
sources. See Section II in the SM for more details.

C. Relation to Signal Enhancement

For signal enhancement in reverberant environments, the es-
timation of the ATF of the desired source is typically required.
In our setting, there is no segment at which the desired source
is the only active source, and therefore, the ATF estimation is
done in the presence of the interference sources. In such a case,
the following quantity could be of interest

SIRj(Γ) =
hH
0 Γh0

hH
j Γhj

, (43)

which is different than (22) in the use of the ATFs instead of
the steering vectors.

Similarly to Proposition 1, the following Proposition 3 exam-
ines the performance in terms of the SIR defined in (43). Here,
assumptions 2-4 are not required, and therefore, the ATFs of
the interference sources could be correlated, and the number
of sources is not limited by the number of microphones in
the array.

Proposition 3: Under Assumption 1, for all j we have

SIRj(ΓR)≥ SIRj(ΓE). (44)
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Another interesting component in signal enhancement is the
Relative Transfer Function (RTF) between different micro-
phones [40], [41], [42]. We compute the RTFs with respect to
the first microphone, i.e., hj

hj(1)
. Since the RTFs are proportional

to the ATFs, assumption 1 holds for the RTFs, and therefore,
all the derived results apply to the RTFs as well.

D. The Segments and the Interference Sources Activity

In this section, we investigate the effect of misalignment be-
tween the segments and the activity of the interference sources.
We consider two interference sources and two segments. We
denote by α the offset between the segments and the activity of
the interference sources. For simplicity, we consider alternately
active interference sources. Suppose the first interference source
is active during α ∈ [0, 1] of the first segment and during 1− α
of the second segment, and suppose the second interference
source is active during 1− α and α of the first and second
segments, respectively. In this case, the population correlation
matrices of the two segments are given by

Γ1(α) = σ2
0h0h

H
0 + α2σ2

1h1h
H
1 + (1− α)2σ2

2h2h
H
2 + σ2

vI

Γ2(α) = σ2
0h0h

H
0 + (1− α)2σ2

1h1h
H
1 + α2σ2

2h2h
H
2 + σ2

vI.
(45)

The correlation matrices in (45) depend on α, and as a result,
their Riemannian mean ΓR(α) and their Euclidean mean ΓE(α)
depend on α as well.

Examining the dependency of the SIR on α leads to the
following result.

Proposition 4: For any α ∈ [0, 1], we have

SIR(ΓR(α))≥ SIR(ΓE(α)). (46)

Proposition 4 states that for every misalignment between
the segments and the activity of the interference sources, the
Riemannian mean leads to higher SIR in comparison to its
Euclidean counterpart. Equality in (46) is obtained for α= 1

2 ,
which means 50% offset. In this case, it holds that Γ1 = Γ2,
and both means are the same.

Empirically, we found that the advantage of the Riemannian
mean over the Euclidean mean decreases as the offset between
the segments and the activity of the interference sources in-
creases. We leave the question of optimal partitioning of the
STFT windows into segments to future work.

VI. EXTENSION TO OTHER DOA ESTIMATION METHODS

In this section, to broaden its applicability, we demonstrate
the incorporation of the Riemannian approach in other beam-
formers. Each beamformer generates a spatial spectrum from
which the directions to the desired sources are estimated ac-
cording to the highest peaks in the spectrum.

As a subspace (SbSp) approach, we implement MUSIC [13]
in the following way. Given ND desired sources, we take the
leading ND eigenvectors of the sample correlation matrix, Γ̂,
and construct the signal subspace matrix, U(Γ̂) ∈ C

M×ND ,
whose columns are the ND eigenvectors. Then, the SbSp spec-
trum is defined by

P SbSp(θ; Γ̂) = dH(θ)U(Γ̂)UH(Γ̂)d(θ). (47)

We note that the appropriate number of eigenvectors ND (the
dimension of the subspace) needs to be estimated.

Similarly to the DS beamformer based on the SRP in (18) and
(19), the Riemannian and the Euclidean SbSp methods are given
by P SbSp(θ; Γ̂R) and P SbSp(θ; Γ̂E), respectively, according to
(47). The SbSp method could also benefit from our Riemannian
approach. Recalling assumptions 1 and 2 and the structure of
the mean correlation matrices ΓR and ΓE in (32), we see that
h0 is an eigenvector of both ΓR and ΓE, spanning the signal
subspace (we assume a single desired source for simplicity).
Moreover, the vectors {hj} are also eigenvectors of ΓR and
ΓE, spanning the subspace of the interference sources. SbSp
methods typically focus on the principal eigenvector. Following
(32), the principal eigenvector is determined according to the
largest coefficient among σ0 and {μj}NI

j=1. The parameter μj

in (33) for the Riemannian mean ΓR is smaller than μj in
(34) for the Euclidean mean ΓE, as proven in Proposition 1.
As a result, the signal subspace is more dominant relative to
the interference subspace when considering the Riemannian
mean in comparison to the Euclidean mean, implying better
results for the Riemannian SbSp approach. For an interference
source with sufficiently high power, the leading eigenvector of
ΓE could span the interference subspace rather than the signal
subspace, whereas the leading eigenvector of ΓR spans the
signal subspace. In Section VII, we demonstrate these SbSp
methods empirically and show the advantage of the Riemannian
approach.

Our approach is also applicable to the MVDR beamformer
[10], whose spectrum is given by

PMVDR(θ; Γ̂) =
1

dH(θ)Γ̂−1d(θ)
. (48)

The typical spectrum of the MVDR beamformer is obtained by
using Γ̂E in (48), namely PMVDR(θ; Γ̂E). We propose to use
the Riemannian mean by setting Γ̂ to be Γ̂R in (48) to obtain
PMVDR(θ; Γ̂R).

In principle, many DoA estimation methods that employ the
sample correlation matrix could potentially benefit from the
proposed approach, even if it is not based on a beamformer.
For example, the Bayesian learning method for signal recov-
ery for DoA estimation proposed in [23] employs the sample
correlation matrix. Its Riemannian alternative is implemented
by following their algorithm only with the Riemannian mean
instead of the Euclidean mean. The empirical results appear in
Section VII.

VII. SIMULATION RESULTS

In this section, we demonstrate the performance of the pro-
posed approach based on Riemannian geometry, and compare
it to Euclidean geometry, implicitly considered by the common
practice1. Additionally, we compare our approach to a heuristic
method, based on the intersection of subspaces. The intersection
leads to the rejection of non-common components, such as the

1The code is available at https://github.com/amitaybar/Interference-
Rejection-using-Riemannian-Geometry-for-DoA-Estimation

https://github.com/amitaybar/Interference-Rejection-using-Riemannian-Geometry-for-DoA-Estimation
https://github.com/amitaybar/Interference-Rejection-using-Riemannian-Geometry-for-DoA-Estimation
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Fig. 1. The reverberant room with the microphone array (blue circles),
the desired source (red star), and the interference sources (green squares).
(a) A 3D view. (b) A 2D view.

interference sources subspace, and preserves common compo-
nents, such as the desired source subspace. We refer to it as the
intersection beamformer (see Appendix A for more details).

We consider a reverberant enclosure of dimensions 5m ×
4m × 3.5m consisting of a microphone array with M = 12 mi-
crophones. The AIRs between the different sources and the
array are generated based on the image method [43], as im-
plemented by the simulator in [44]. The sampling frequency is
16KHz, and the length of the AIRs is set to 2048 samples. The
received signal is transformed to the time-frequency domain
using STFT with a window size of 1024 samples with 50%
overlap. We test all methods using a single frequency bin, of
index 250, chosen according to the microphone spacing, which
is 4.36cm. Here, the correlation matrix estimation is based on 16
STFT windows, which results in a segment duration of 1.024s.
The emitted signals are generated as white Gaussian noise. The
desired source is constantly active, whereas the interference
sources are active only intermittently.

All the sources are positioned on a 140◦ arc of radius 2m
from the center of the array on the XY plane. The heights of
the interference sources vary randomly, uniformly distributed
between 0.5m and 3m. The height of the desired source is
set to 1.8m. Fig. 1 presents the room layout, where the (two)
interferences are marked by green squares, the desired source
by a red star, and the microphone array by blue circles. The
leftmost microphone is positioned at (2.0436m, 1m, 2m), and
the rest are positioned 4.36cm apart along the x-axis. While we
focus on this specific configuration, we note that we tested other
configurations that yielded similar results.

We examine the performance of both the DS and the SbSp
methods. Algorithm 2 is used for the proposed Riemannian DS,
and the common practice is implemented by replacing step 3 in
Algorithm 2 with (20). The SbSp methods require knowing the
dimension of the signal space of the mean correlation matrix.
For the intersection method only, the dimension of the signal
space of each segment is also required. Since the desired source
may not be the strongest source received at the array, we need
to consider all the active sources, and not merely the strongest
one when estimating the dimension of the signal subspace.
To estimate the dimension, we implement a heuristic algorithm,
based on the spectral gap. We consider the dimension of the
signal space to be the number of eigenvalues higher than a
threshold. For all methods, the threshold for the mean corre-
lation matrix is the mean value plus the standard deviation of
the eigenvalues (normalized to a unit sum). For the intersection

method, the threshold for the sample correlation matrix of each
segment is 1.5 times the mean of the eigenvalues of the sample
correlation matrix. Apart from this practical implementation,
we also present results for an oracle implementation, assuming
the dimension of the signal space is perfectly known.

For quantitative evaluation, we use the root mean square error
(RMSE) and the accuracy, for which DoA estimation error that
is smaller than 3◦ (arbitrarily chosen) is considered accurate. In
addition, we use two other metrics. The first is the mean of the
empirical output SIR with respect to all the interference sources,
which is given by

SIR =
1

NI

NI∑

j=1

P (θd)

P (θij)
, (49)

where P is the spectrum computed using the evaluated method.
The second metric is the directivity [45, ch.2], which is
given by

D(Γ̂) =
P (θd)

1
2

∫ π

0
P (θ) sin(θ)dθ

. (50)

The proposed approach results in inherent interference re-
jection, which is its greatest merit. The attenuation of the in-
terference sources by our approach allows for accurate DoA
estimation even in the presence of strong interference sources.
The measure of SIR is indicative of the amount of interference
rejection.

In the first experiment, we consider two interference sources,
each active at a single, but disjoint, segment, resulting in a
signal of 2.048s. The reverberation time is set to 150ms, and the
SNR is 20dB.

We start with an example of the SRP of the DS beamformer
(see (18)), computed using Γ̂R and Γ̂E, which is presented at
the top of Fig. 2(a). The SRP of the Riemannian DS beam-
former is shown in solid blue and the SRP of the Euclidean
DS beamformer is shown in dashed red. Both SRPs are in a
dB (log) scale. The directions to the desired source and the
interference sources are represented by a solid black line and
a dashed black line, respectively. We see that by using Γ̂R the
main lobe is directed towards the desired source. In contrast,
the SRP using Γ̂E is peaked at two different directions, none
of which is the direction to the desired source. The bottom of
Fig. 2(b) is the same as Fig. 2(a), only with the SRP computed
using the sample correlation matrix of each of the two segments,
presented in different shades of orange. Even though the main
lobes of the two SRPs are not pointing toward the desired
source, the Riemannian mean leads to a SRP with the main
lobe directed at the desired source, whereas the lobes to other
directions are highly attenuated. We emphasize that viewing the
SRP of the Euclidean DS beamformer in addition to the SRP
of each segment separately does not allow correct identification
of the direction to the desired source. We note that since the
population correlation matrix is approximately low rank and the
number of microphones is typically small, the estimation of the
correlation matrix based on a small sample is feasible.

Next, we randomly generate 200 different pairs of positions
for the interference sources. For each pair, the desired source
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Fig. 2. The SRP of the DS beamformer using (a) ̂ΓR in solid blue and ̂ΓE in
dashed red, and (b) ̂Γ1 and ̂Γ2 in different shades of orange. The black solid
line indicates the direction of the desired source, and the dashed black lines
indicate the directions to the interference sources. The Input SIR is −6dB.

is located at 20 different equally spaced directions along the
arc (with the height of 1.8m). Thus, in total, 4000 different
scenarios are examined.

Fig. 3 presents the mean output SIR (a) and the directivity
(b) for the DS method using the correlation matrix estimates:
Γ̂R (based on Riemannian geometry) in blue and Γ̂E (based on
Euclidean geometry) in red. The box indicates the 25th and 75th
percentiles, and the line marks the median. We test the different
methods, Riemannian or Euclidean, in varying input SIR values,
i.e. the SIR with respect to the source’s power (excluding the
AIRs and the beamformer processing).

We see that the Riemannian DS method attains high output
SIR values, even for strong interference sources (high input
SIR). In contrast, the Euclidean DS method results in rela-
tively low output SIR values. The gap in the output SIR values
between the Riemannian DS, and the Euclidean DS is up to
10dB. These results coincide with Proposition 1, stating that
SIRj(ΓR)> SIRj(ΓE), for every interference source j. We em-
phasize that the Euclidean mean, Γ̂E, is equivalent to the com-
mon practice of using the entire signal for a single correlation
matrix estimation. Since both the mean output SIR and the di-
rectivity present similar trends, and due to space considerations,
in the following, we only present the mean output SIR.

Fig. 4 is the same as Fig. 3, but presenting the SbSp method
with the addition of the intersection method, which appears
in orange. Fig. 4(a) presents the results for the practical im-
plementation that includes estimating the dimension, whereas
Fig. 4(b) presents the results for the oracle. We see that the
Riemannian approach outperforms its Euclidean counterpart by
approximately 20dB. In addition, the oracle SbSp method is
better than the practical SbSp. In comparison to Fig. 3(a), it
can be seen that the Riemannian SbSp method results in higher
output SIRs than the Riemannian DS method. In contrast, for
the Euclidean approach, the SbSp method yields slightly lower
SIRs than the DS method. The reason is that the Rieman-
nian mean better attenuates the interference sources, allow-
ing for a better estimation of the signal subspace than the
Euclidean mean.

Fig. 3. (a) The mean output SIR and (b) the directivity for two interference
sources, for the Riemannian and the Euclidean DS method. The x-axis
indicates the input SIR, and the y-axis indicates the output SIR. The box
indicates the 25th and 75th percentiles, and the central line marks the median.
Several input SIR values are presented.

Fig. 4. The mean output SIR of the SbSp methods. (a) Practical implemen-
tation. (b) Using an oracle. The box indicates the 25th and 75th percentiles
and the central line marks the median. The x-axis indicates the input SIR, and
the y-axis indicates the output SIR. Several input SIR values are presented.

We continue with examining the direction estimation to the
desired source. The estimated direction is defined as the direc-
tion leading to the maximal value of the SRP, namely

θ̂d = argmax
θ

P (θ). (51)

Fig. 5 shows the estimated direction to the desired source for
the Riemannian DS method (blue square), the Euclidean DS
method (red circle), and the intersection method (orange star).
The black solid line marks the true location of the desired source
(at 20 different positions). The dashed lines mark the fixed
location of the interference sources. The results for input SIR
−6dB and−10dB appear in Fig. 5(a) and Fig. 5(b), respectively.
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Fig. 5. Estimation of the DoA to the desired source for (a) input SIR of
−6dB and (b) input SIR of −10dB.

We see that using the Riemannian mean, the direction estima-
tion follows the desired source. In contrast, using the Euclidean
mean (the entire signal) results in estimating the direction of
one of the interference sources. The intersection method is also
inferior to the proposed approach, resulting in direction estima-
tion to the desired source or an interference source depending
on the input SIR. We note that since the DoA is estimated using
(51), only the main lobe of the SRP is considered for the DoA
estimation (for simplicity, we assume a single desired source).
Typically-used beamformers, based on Euclidean geometry, re-
sult in a main lobe that is pointing toward the strongest source
which is an interference source. Since the number of sources
is unknown, and their relative positioning is unknown as well,
considering even lower lobes does not allow for estimating the
DoA of the desired source using the SRP. Even if an interference
source does not mask the desired source (which is often the
case), we cannot differentiate between an interference source
and the desired source, and cannot assign the correct direction to
the desired source. In contrast, the Riemannian approach rejects
the interference sources, resulting in a main lobe that points
toward only the desired source only. We report that similar
results as in Fig. 5 are obtained also for an SNR value of
0dB and for interference sources with similar DoA. Results for
speech signals from the TIMIT dataset appear in Appendix B
where similar trends are demonstrated.

We repeat the experiment for 200 iterations, where at each
iteration the desired source is positioned at 20 different posi-
tions as before. Fig. 6 presents the RMSE and the accuracy for a
different number of microphones for the Riemannian approach
(blue circles) and its Euclidean counterpart (red squares). We
recall that DoA estimation error that is smaller than 3◦ (arbi-
trarily chosen) is considered accurate. We see that the proposed
approach leads to significant improvements for all the tested
number of microphones.

Next, we examine the sensitivity of the proposed approach
to the SNR and the reverberation time. We repeat the setting of
the two interferences, as described in the first experiment. The
results are presented in Fig. 7. In Fig. 7(a), the mean output SIR
for the DS method is presented as a function of the reverberation
time for a fixed SNR of 20dB. Several input SIR values are
shown: 0dB (asterisk), −6dB (circle), and −10dB (triangle).
The results for the Riemannian and the Euclidean DS appear
in blue and red, respectively. Fig. 7(b) is the same as Fig. 7(a),
only for different SNR values for a fixed reverberation time of

Fig. 6. (a) RMSE and (b) accuracy versus the number of microphones for
two interference sources with input SIR of −10dB.

Fig. 7. The mean output SIR as a function of (a) the reverberation time
and (b) the SNR, for two interference sources. The Riemannian DS appears
in blue, whereas the Euclidean DS appears in red. Several input SIR values
are presented: 0dB (asterisk), −6dB (circle), and −10dB (triangle).

β = 150ms. We see that the smaller the reverberation time is,
the higher the output SIR is for the Riemannian DS method. In
contrast, the Euclidean DS is less affected by the reverberation
time, resulting in relatively low output SIRs. For all values
of reverberation times, the Riemannian DS results in higher
output SIR than its Euclidean counterpart. From Fig. 7(b), we
see that the SNR has a large impact on the performance of the
Riemannian DS; the higher the SNR is, the higher the output
SIR becomes. Conversely, the Euclidean DS is moderately af-
fected by the SNR, resulting in much lower output SIR values.
A possible explanation is that the main phenomenon limiting
the performance of the Euclidean approach is the existence of
interference sources. In addition, as Proposition 2 predicts, the
sensitivity of the Riemannian DS to the SNR is higher than the
Euclidean DS, and the higher the SNR is, the larger the gap
in the performance between the Riemannian and the Euclidean
approaches.
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Fig. 8. (a) Activation map for the 14 interference sources during the
observed 10 time segments (blue indicates ‘active’). (b) Output SIR of the
different beamformers. The input SIR of each interference is −6dB.

We examine the performance of the MVDR beamformer,
given by (48). The MVDR beamformer is popular when inter-
ference sources are present, thanks to its distortionless response
in the direction of the desired source, and its typical narrow
beams. However, in our setting, since the desired source is
accompanied by interference sources, and the directions to all
the sources are unknown, the DoA estimation of the desired
source using the MVDR beamformer is outperformed by the
DS and the SbSp methods. We also examine the case of two
desired sources. The results show similar trends and appear in
Appendix B, due to space considerations.

In the second experiment, we examine a multiple interfer-
ence setting, by considering NI = 14 interference sources. We
note that the number of interference sources is larger than the
number of microphones, NI >M = 12, which typically limits
the number of interference sources that can be accommodated
(e.g. see [30]). Furthermore, assumptions 1 and 2 implicitly
restrict the number of interference sources to be bounded by
M −ND = 11. This limitation is only for the analysis, and, in
practice, improved results are obtained even for a larger num-
ber of interference sources. The signal contains 10 segments,
demonstrating the number of segments could be smaller than
the number of interference sources. The duration of the emitted
signal is 10.24s. The input SIR for each interference is −6dB.
Each interference has a 30% probability of being active at each
segment. The position of all the sources is set at random on
an arc as described in the first experiment. The activation map
of the interference sources at the first Monte Carlo iteration
appears in Fig. 8(a), where light blue indicates ‘active’. On
average, 4.2 interference sources are active at the same time
at each segment. An interference source that is partially active
during a segment is considered active during the entire segment
(a worst case). Note that there are interference sources active
continuously during more than one segment, so their activation
is not necessarily related to the division of the received signal
into segments. Additionally, there exists no segment in which
only one source is active. The output SIRs are presented in Fig.
8(b). The Riemannian DS and SbSp methods appear in blue, the
Euclidean DS and SbSp methods are in red, and the intersec-
tion method is in orange. It can be seen that the Riemannian
approach is superior to the Euclidean one, resulting in higher
output SIRs.

We note that Fig. 8(b) serves as an example of an increased
number of segments in comparison to Fig. 3. Since there are

(a) (b)

Fig. 9. The RMSE of the Bayesian learning method for 6 desired sources
with and without the proposed approach in blue and red, respectively, for (a)
SIR −6dB and (b) SIR −10dB.

on average 4.2 active interference sources at every segment, the
results are not improved as the number of segments is increased.

We remark that the empirical results of the proposed ap-
proach applied to the typically-used beamformers are not sen-
sitive to the number of samples used for the computation of the
sample correlation matrix. Since, in the experiments, additional
samples also include samples from at least one interference
source, adding samples increases the effect of the interfer-
ence sources, resulting in weak dependency on the number
of samples.

Next, we evaluate the performance of the proposed approach
applied to the Bayesian learning method proposed in [23] for
sparse signal recovery for DoA estimation. This is done by
replacing the typically-used (Euclidean) sample correlation ma-
trix with the Riemannian mean of sample correlation matrices
computed in short-time segments. We repeat the same experi-
ment as in [23] with 6 desired sources, only we consider two dis-
jointly active interference sources with SIR −6dB and −10dB.
The SNR is 20dB. The number of desired sources is unknown.
We evaluate the performance using 3000 experiments, where
at each experiment the direction of the interference sources
is generated uniformly at random between [−50◦, 50◦]. Fig. 9
presents the RMSE for a different number of STFT windows,
which are equivalent to the number of samples for the sample
correlation matrix computation of each segment (there are two
segments in the experiment). We see that applying the proposed
Riemannian approach leads to improved performance for all the
tested number of samples.

VIII. CONCLUSION

We present a Riemannian approach for the design of beam-
formers and DoA estimation methods for interference rejection
in reverberant environments. Specifically, the Riemannian mean
is incorporated instead of the sample correlation matrix for DoA
estimation of the desired source, as it inherently rejects the inter-
ference sources. We analytically show that the DS beamformer,
based on the Riemannian geometry of the HPD manifold, re-
sults in a higher output SIR than the typical DS beamformer,
which implicitly considers the Euclidean geometry. We extend
our approach to other beamformers, such as subspace-based
beamformers and the MVDR, as well as a Bayesian learn-
ing method, experimentally demonstrating superior output SIR
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and better DoA estimations in comparison to their Euclidean
counterparts.

APPENDIX A
THE INTERSECTION BEAMFORMER

Another beamformer we examine is based on the observa-
tion that the desired signal subspace is the intersection of sub-
spaces spanned by eigenvectors of the correlation matrix of the
different segments. From each segment, i, we extract the de-
sired signal subspace from the sample correlation matrix, Γ̂i,
to obtain V (Γ̂i) whose columns are the ND leading eigenvec-
tors. The projection matrix onto the signal subspace of Γ̂i is
computed as follows

P sig(Γ̂i) = V (Γ̂i)
(

V H(Γ̂i)V (Γ̂i)
)−1

V H(Γ̂i). (52)

Since each desired source is active during all the segments,
its ATF, hd

j , is an eigenvector of V (Γ̂i). Consequently, it
is also an eigenvector of P sig(Γ̂i) for all i with an eigen-
value 1, i.e. P sig(Γ̂i)h

d
j = hd

j . As a result, it is an eigenvec-
tor of P sig =

∏Ls

i=1 P sig(Γ̂i) with eigenvalue 1 as well since

P sigh
d
j =

(
∏Ls

i=1 P sig(Γ̂i)
)

hd
j = hd

j . We consider the lead-

ing ND eigenvectors of P sig and form the matrix P sig,ND ∈
C

M×ND , whose columns are the eigenvectors. The intersection
spectrum is defined as follows

P Intersect(θ) = dH(θ)P sig,NDP
H
sig,ND

d(θ). (53)

We note that in addition to the dimension of the signal space of
the matrix P sig, the intersection method requires the estimation
of the dimension of the signal space of the correlation matrix
for each segment (in order to compute V (Γ̂i)).

APPENDIX B
ADDITIONAL EXPERIMENTAL RESULTS

We repeat the setting of the first experiment, only with an ad-
ditional desired source, located at (2m, 3.5m, 2.5m). Fig. 10 is
the same as Fig. 3, but the mean output SIR is taken over the two
interferences and the two desired sources. Fig. 10(a) presents
results for input SIR of −10dB, and Fig. 10(b) presents results
for input SIR of −6dB. We see that the Riemannian approach is
superior to the Euclidean one, resulting in higher SIRs. Also, the
intersection method is more sensitive to the input SIR, resulting
in higher output SIR for −6dB. Similar to the setting of one
desired source, the Riemannian SbSp method is superior to the
Riemannian DS method, as opposed to the Euclidean approach,
for which they are on par. This is a consequence of the higher
interference attenuation of the Riemannian approach, resulting
in a better estimate of the signal space.

Next, we examine the performance of the Riemannian
MVDR and the Euclidean MVDR beamformers, given by (48),
for Γ̂R and Γ̂E, respectively. Fig. 11 presents the results. It is
the same as Fig. 3, only for the MVDR beamformer. We see
that the Riemannian approach is superior to the Euclidean one,
however, with a slight advantage.

(a) (b)

Fig. 10. Output SIR of the different beamformers for two desired sources
and two interference sources. (a) The input SIR is −10dB. (b) The input SIR
is −6dB.

Fig. 11. The mean output SIR for the Riemannian and the Euclidean MVDR
beamformers in the presence of two interference sources. The x-axis indicates
the input SIR, and the y-axis indicates the output SIR.

Fig. 12. Estimation of the DoA of the desired source for speech signals
where (a) the input SIR is -6dB, and (b) the input SIR is −10dB.

We repeat the experiment with speech signals from the
TIMIT dataset. For each source, the speaker and the time inter-
val are chosen uniformly at random. Fig. 12 presents the results.
We see that the proposed approach leads to improved results in
comparison to the typically-used beamformers also for speech
signals.

APPENDIX C
EXTENSION TO A STREAMING DATA SETTING

In a streaming data setting, we do not have access in advance
to the entire signal, and the direction estimation is updated as
more samples become available. Therefore, in this setting, we
cannot compute the Riemannian mean using (17). To circum-
vent this, we turn to the estimator of the Riemannian mean
proposed in [37], [46], which is updated after every received
segment.

Each segment, i, is processed separately using Lw STFT
windows, and an estimation of the correlation matrix, Γ̂i, is
computed using (16). Next, the estimation of the Riemannian
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Algorithm 3 Streaming DoA estimation in the presence of
multiple interferences
Input: the current result of the STFT window of the received
signal
Output: the estimated direction of the desired source θ̂

1: Set R̂0 = I
2: Repeat

1) Accumulate Lw STFT windows (that form a segment)
2) Compute its sample correlation matrix, Γ̂i, using (16)

3) Compute R̂i = R̂
1
2

i−1(R̂
− 1

2

i−1Γ̂iR̂
− 1

2

i−1)
1
i R̂

1
2

i−1

4) Compute PDS(θ; R̂i) using (18)
5) Return θ̂ = argmaxθPDS(θ; R̂i)

mean, denoted as R̂i, which is the adaptive counterpart of ΓR,
is updated using the following update step

R̂i = R̂
1
2

i−1(R̂
− 1

2

i−1Γ̂iR̂
− 1

2

i−1)
1
i R̂

1
2

i−1. (54)

The SRP of the DS beamformer is computed using (18) with
R̂i as an estimate of Γ̂R, and the direction to the desired source
is set using (19). The algorithm is described in Algorithm 3.

We note that the current correlation matrix estimate has a full
rank if Lw >M . This implies a latency of at least M times the
duration of the STFT window. In case the STFT is performed
with overlap this latency is reduced accordingly.

As for the Euclidean alternative, its estimator is updated in
finer granularity at every STFT window, l. The estimator at the
lth update is denoted by El and is computed as follows

El =
n− 1

n
El−1 +

1

n
z(l)zH(l). (55)

Setting Lw = 1 in step 2.1 in Algorithm 3, and substituting (55)
in step 2.3 in Algorithm 3, results in the streaming version of
the Euclidean counterpart.

APPENDIX D
ON THE PARTICULAR CHOICE OF THE RIEMANNIAN METRIC

In this work, we consider the Affine Invariant metric (also
called Fisher Information metric) [47]. Another commonly-
used metric in the space of HPD matrices is the Log-Euclidean
metric [48], which could be viewed as a computationally effi-
cient local approximation of the Affine Invariant metric. The
induced Log-Euclidean distance is given by

d2LE(Γ1,Γ2) = ‖ log(Γ1)− log(Γ2)‖2F . (56)

In the context of this work, the Affine Invariant metric is advan-
tageous over the Log Euclidean because it better enhances the
desired source subspace relative to the interference and noise
subspace, as we show next. We remark that the derivation is
similar to the derivation in Section V, where we demonstrate
the advantage of the Affine Invariant metric over Euclidean
geometry. First, we note that the following holds [49]:

tr(ΓR)≤ tr(ΓLE), (57)

where ΓLE denotes the Riemannian mean based on the Log-
Euclidean metric. Second, the ATF to the desired source, h0, is
a common eigenvector of all the population correlation matri-
ces per segment. Consequently, according to Lemma 2 below,
the mean correlation matrices based on both metrics have the
same eigenvalue associated with the common eigenvector h0.
More specifically, denoting λ0(Γ)≡ hH

0 Γh0

‖h0‖2 , we get λ0(ΓR) =

λ0(ΓLE).
Lemma 2: Let {Γj}j be the set of HPD matrices having a

common eigenvalue λ0 associated with the common eigenvec-
tor h0. Then

hH
0 ΓRh0 = hH

0 ΓLEh0 = hH
0 ΓEh0 = ‖h0‖2λ0, (58)

where ΓR, ΓLE, and ΓE are the Riemannian means based on
the Affine Invariant and the Log-Euclidean metrics, and the
Euclidean mean.

The rest of the eigenvectors of the correlation matrices span
the interference and noise subspace. We recall that λi(Γ) is the
ith eigenvalue, so we get

λ0(ΓR)
∑M−1

i=1 λi(ΓR)
≥ λ0(ΓLE)

∑M−1
i=1 λi(ΓLE)

, (59)

which follows from Lemma 2 and (57).
We see that the Riemannian mean induced by the Affine

Invariant metric captures better the desired signal subspace
in comparison to the Riemannian mean induced by the Log
Euclidean metric and the Euclidean mean (according to (24)),
entailing an advantage in SbSp methods, for example.
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