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ABSTRACT

Dynamic mode decomposition (DMD) is a leading tool for equation-free analysis of high-dimensional dynamical systems from observations.
In this work, we focus on a combination of DMD and delay-coordinates embedding, which is termed delay-coordinates DMD and is based
on augmenting observations from current and past time steps, accommodating the analysis of a broad family of observations. An important
utility of DMD is the compact and reduced-order spectral representation of observations in terms of the DMD eigenvalues and modes, where
the temporal information is separated from the spatial information. From a spatiotemporal viewpoint, we show that when DMD is applied
to delay-coordinates embedding, temporal information is intertwined with spatial information, inducing a particular spectral structure on
the DMD components. We formulate and analyze this structure, which we term the spatiotemporal coupling in delay-coordinates DMD.
Based on this spatiotemporal coupling, we propose a new method for DMD components selection. When using delay-coordinates DMD that
comprises redundant modes, this selection is an essential step for obtaining a compact and reduced-order representation of the observations.
We demonstrate our method on noisy simulated signals and various dynamical systems and show superior component selection compared
to a commonly used method that relies on the amplitudes of the modes.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0123101

Dynamical systems are abundant in many fields of science and
engineering. As dynamical systems are often high-dimensional
and complex, their characterization from observations is a cov-
eted goal. A key task in accomplishing this goal is finding a
reduced-order representation of a system, where dynamic mode
decomposition (DMD) is a prominent tool for this purpose. In
recent years, the combination of delay-coordinates embedding
and DMD (i.e., delay-coordinates DMD) has been shown to be
highly useful in the characterization of dynamical systems, even
when these systems are highly nonlinear or chaotic. This com-
bination gives rise to a specific spectral structure that does not
exist in ordinary DMD and has not been studied so far. In this
work, we formulate and analyze this structure, where we show
that the spectral components of delay-coordinates DMD exhibit
a spatiotemporal coupling. This coupling suggests that the rep-
resentations obtained by delay-coordinates DMD can be further
reduced. By considering this coupling, we propose not only to
decouple the spatial information from the temporal information
but also to exploit it to construct an improved reduced-order

representation in an unsupervised fashion. We demonstrate our
approach on several dynamical systems that include noisy obser-
vations of undamped and damped mechanical oscillators.

I. INTRODUCTION

Time-series analysis, modeling, and prediction are ubiquitous
tasks in applied sciences. When the time-series stem from ergodic
dynamical systems, learning their phase space in a nonparametric
fashion from sufficiently long intervals of observations is possi-
ble and has become an active field of research in recent years.
This so-called data-driven approach seeks to obtain meaningful,
physics-related knowledge, in an equation-free manner, shifting
the focus from equations-based descriptions to observations-based
analysis.1–6 Existing data-driven methods can be largely divided into
two categories.7 The first is based on a state-space representation,
and the focus is typically on finding a map that propagates a state at a
given time to a state at a future time. Arguably, the classical approach

Chaos 32, 123127 (2022); doi: 10.1063/5.0123101 32, 123127-1

© Author(s) 2022

 16 January 2024 08:57:34

https://aip.scitation.org/journal/cha
https://doi.org/10.1063/5.0123101
https://doi.org/10.1063/5.0123101
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0123101
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0123101&domain=pdf&date_stamp=2022-12-09
http://orcid.org/0000-0001-6373-929X
http://orcid.org/0000-0003-1797-4824
http://orcid.org/0000-0003-2254-3041
http://orcid.org/0000-0002-6838-1423
mailto:emilbr@campus.technion.ac.il
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1063/5.0123101


Chaos ARTICLE scitation.org/journal/cha

is to approximate the nonlinear dynamics as a collection of locally
linear systems on tangent spaces near attractors.8–10 Another more
recent class of methods in this category constructs reduced models
of the state space in Euclidean spaces and then finds the propagation
rules in the reduced spaces.1,11–13

The second category is an operator-theoretic approach that
considers observables of the system. In this approach, many recent
methods are based on the Koopman operator,14 which is a lin-
ear, infinite-dimensional operator that operates on observables in
a Hilbert space and propagates them linearly in time.15,16 While the
ability to represent nonlinear dynamics in a linear fashion is per-
haps the most notable property of using the Koopman operator, it
has several other remarkable attributes. In this line of work,7,15,17–19

it was shown that the Koopman operator has the ability of captur-
ing the dynamics of linear or nonlinear dynamical systems through
its spectral components. More concretely, the time evolution of a
dynamical system can be decomposed into spatial patterns, which
are often referred to as the Koopman modes and derived from the
eigenfunctions of the Koopman operator, and temporal patterns,
which are derived from the eigenvalues of the Koopman operator.
Therefore, the spectral analysis of the Koopman operator is of high
importance for obtaining an informative description of dynamical
systems.7,17,18,20–22

Using the Koopman operator for analysis poses an impor-
tant trade-off. On the one hand, it facilitates a linear description
of the dynamics and a useful decoupling of the spatial and tem-
poral patterns via its spectral representation. On the other hand,
the Koopman operator is infinite dimensional. Therefore, finite-
dimensional approximations are necessary for practical purposes.
Perhaps, the most common technique for such a finite approxima-
tion is the dynamic mode decomposition (DMD), introduced by
Schmid and Sesterhenn,23,24 where the primary goal is to approx-
imate the Koopman eigenvalues and modes in finite spaces based
on a finite set of observations.25 The DMD eigenvalues and modes
give rise to a discrete spatiotemporal representation of the dynam-
ical system, facilitating a data-driven and equation-free analysis.
Following its appearance, several variants for enhancing the capa-
bilities of DMD have been introduced, e.g., the extended DMD
(EDMD),26 where projections on finite-space dictionaries were used
to improve the spatiotemporal representation, least-squares,27,28 and
sparsity promoting29,30 techniques, as well as approaches for the
analysis of compressed data.31,32 Additional extensions of DMD
have been introduced, such as multiresolution DMD (mrDMD),33

which effectively uncovers multiscale structures in the data, and
DMD with control (DMDc),34 which extracts low-order models of
high-dimensional systems that require control.

Indeed, in recent years, DMD has been shown to be a pow-
erful tool, demonstrating remarkable capabilities in a broad range
of fields35–40 and, particularly, in fluid dynamics.25,41–47 Nevertheless,
despite its popularity and success, DMD has some notable limi-
tations. For example, a straightforward application of DMD does
not allow for the signal reconstruction of a standing wave.16,48 In
addition, ordinary DMD cannot handle cases when the number of
linearly independent DMD modes is smaller than the number of
the system’s oscillation frequencies.49 Another notable limitation of
DMD concerns one-dimensional signals, which are the output of
an abundance of sensors, such as thermocouples,50 force sensors,51,52

and magnetic and acoustic emission sensors.53,54 The application of
DMD to such signals results in a degenerate (scalar) representation.

Combining delay-coordinates embedding and DMD miti-
gates these limitations.16,48,49 The delay-coordinates embedding (also
referred to as time-delay embedding, or, simply, delay-coordinates)
is a method for augmenting past observations to the present obser-
vation. This approach dates back to 1981 with the formulation of
Takens’ embedding theorem,55 according to which an attractor of
a system can be reconstructed up to a diffeomorphism using delay
embedding.

Various studies that associate delay-coordinates and DMD-
based methods have been presented in recent years. For example, Le
Clainche and Vega49 presented the higher order DMD (HODMD),
a global linear method that is capable of uncovering a large num-
ber of frequencies of periodic and quasiperodic dynamical systems
based on limited and noisy input data. Brunton et al. introduced
the HAVOK analysis in terms of a Hankel matrix, which success-
fully represents highly nonlinear and chaotic systems using a linear
model and intermittent forcing.35 Pan and Duraisamy provided the
minimal required augmentation number for a perfect recovery of
dynamical systems based on their Fourier spectrum.56 We note that
combinations of delay-coordinates and Koopman operator-based
methods have also been investigated.19,57,58

In this paper, we show that despite its prevalence, application of
DMD to augmented data (i.e., delay-coordinates DMD) gives rise to
a particular spectral structure that does not exist in ordinary DMD
applications and, to the best of our knowledge, has not been studied
in the existing literature. This structure comprises augmented DMD
modes that embody temporal information, which is entangled with
spatial information. We formulate and analyze this entanglement,
and term it the spatiotemporal coupling in delay-coordinates DMD.

Based on this spatiotemporal coupling, we propose a new
approach for obtaining compact and reduced-order representa-
tions of dynamical systems from observations, where, similar to
ordinary DMD, the spatial and temporal patterns are decoupled.
Our approach includes solving an inherent challenge of delay-
coordinates DMD, where the number of augmented DMD com-
ponents is often larger than the number of intrinsic modes of the
dynamical system. In such cases, the augmented DMD components
can be divided into two subsets: those that describe the dynamical
system, which we term true, and those that are a mere artifact of the
augmentation, unrelated to the system, which we term spurious.

By relying on the difference in their spatiotemporal coupling,
we distinguish between the true and spurious DMD components
and present a method for selecting the true components. In contrast
to ordinary DMD, our method is based on delay-coordinates DMD
and is, therefore, capable of analyzing and representing a broader
family of observations and signals. We demonstrate the spatiotem-
poral coupling and the effectiveness of our approach on various
simulated dynamical systems.

This paper is organized as follows. Section II briefly describes
existing approaches for mode selection. Section III presents the
problem formulation. In Sec. IV, we introduce the spatiotemporal
coupling in delay-coordinates DMD in detail and reveal the spe-
cific relations within augmented DMD modes. Then, in Sec. V,
we propose a new method for decoupling the spatial and temporal
information, leading to the identification of the true augmented
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DMD components and to a compact, reduced-order, and informa-
tive representation of the observations. For the purpose of illustra-
tion, in Sec. VI, we present the application of our method to a two-
mode sine signal. Finally, in Sec. VII, our method is demonstrated
on various dynamical systems, outperforming the common method
that relies on the amplitudes of the modes at low signal-to-noise
ratio (SNR) values.

II. RELATED WORK ON MODE SELECTION

The identification of the dominant DMD components required
for optimal, reduced-order representations of dynamical systems
(which we term true) has been studied in wider contexts, beyond
delay-coordinates DMD. Criteria and methods for such a purpose
are usually referred to as mode selection, where we use the broader
term DMD components selection. For instance, Rowley et al. ordered
the DMD modes by their norms (amplitudes)25—a method we term
the maximal amplitudes method. The norms of the modes can be
further weighted by the magnitudes of the corresponding eigenval-
ues to account for modes that have large norms yet decay rapidly,
as suggested by Tu et al.48 Schmid et al. used a projection of the
data sequence on the identified modes, whose coefficients indicate
on the significance of the modes.59 Jovanović et al. introduced a
sparsity-promoting approach using an addition of a penalty term of
the DMD amplitudes, which regularizes the least-square deviation
between the linear combination of DMD modes and the snapshots
matrix.29 Tissot et al. proposed an energetic criterion, where the
amplitude of a DMD mode is weighted by its corresponding tem-
poral coefficient.60 Sayadi et al. proposed a parameterized approach,
which utilizes the sparsity promoting DMD, and then reconstructs
the modes’ amplitudes using a time-dependent coefficient, giving a
notion of their significance.30 Another approach was proposed by
Kou and Zhang, which considered the initial conditions and tem-
poral evolution of DMD modes, ordering them according to the
integrals of their corresponding time coefficients.61

Our work differs from the above studies on mode selection,
as it provides, for the first time to the best of our knowledge,
a mode selection framework in the specific context of delay-
coordinates DMD. Seemingly, the problem of mode selection in
delay-coordinates DMD is more challenging due to the existence
of spurious DMD modes, as well as the higher dimensions of aug-
mented DMD modes compared to the observations. Nevertheless,
we show that despite the additional challenges, delay-coordinates
DMD also constitutes a remedy. Specifically, we show that the spa-
tiotemporal coupling in delay-coordinates DMD bears information
that facilitates a new method for mode selection.

III. PROBLEM FORMULATION

Consider a dynamical system

xk+1 = f(xk), k ∈ Z, (1)

which evolves in discrete time k on a manifold M ⊂ R
n, where

xk ∈ M is a state vector, and f : M 7→ M. The function f is
unknown and could be deterministic or stochastic, e.g., due to
the presence of noise. Assume that this discrete time formulation

arises from a continuous-time dynamical system ẋ = Ax. Specif-
ically, suppose that the state is sampled at a fixed sampling rate
ωs = 2π/1t, and m + 1 discrete samples xk = x(k1t) of the state
are collected, where k = 0, 1, . . . , m. In this work, following com-
mon practice,49,56,58 we assume that m > n.

Our goal is to analyze the dynamics of system (1) based on the
finite set of observations {xk}m

k=0. For this purpose, we use the DMD
approach,7,23,48 which provides a spatiotemporal representation of
the observations, and is described next. First, a linear approximation
of the discrete-time system in (1) is employed,

xk+1 = Axk, A ∈ R
n×n, and xk ∈ R

n. (2)

To find A, the observations {xk}m
k=0 are arranged into two observa-

tion matrices

X =





| | |
x0 x1 · · · xm−1

| | |



 ∈ R
n×m,

X′ =





| | |
x1 x2 · · · xm

| | |



 ∈ R
n×m.

(3)

Then, following the exact DMD,16,48 the singular value decom-
position (SVD) of X is computed as

X = U6V∗, (4)

where U ∈ C
n×r, 6 ∈ C

r×r, V ∈ C
m×r, (·)∗ is the complex conjugate

transpose, and r = rank(X). Define Ã ∈ C
r×r by

Ã = U∗X′V6−1. (5)

The so-called DMD eigenvalues, λi, are the eigenvalues of Ã that
satisfy

Ãvi = λivi, i = 1, . . . , r, (6)

where vi are the corresponding eigenvectors. The so-called exact
DMD modes, φi, are given by16,48

φi = 1

λi

X′V6−1vi, i = 1, . . . , r. (7)

Tu et al. defined the exact DMD modes, φi, and showed that
{

λi,φi

}

are the eigenvalue-eigenvector pairs of A.48 Moreover, the authors
distinguished between the exact modes φi and the DMD modes
obtained by the standard DMD24 (termed projected DMD modes).
It was noted that the exact and projected modes have the tendency
to converge when X and X′ have the same column spaces.16

The observations xk can be expressed as

xk =
r
∑

i=1

λk
i φiη0,i, (8)

where η0,i is the ith entry of η0 = 8∗x0 and 8 is the matrix whose
columns are the r leading DMD modes φi, satisfying 8∗8 = I.
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Alternatively, (8) can be written in a matrix form as

xk = 8ck,

8 =





| | |
φ1 φ2 · · · φr

| | |



 ∈ C
n×r,

ck =











λk
1η0,1

λk
2η0,2

...
λk

rη0,r











∈ C
r.

(9)

The continuous-time counterpart of the decomposition in (8),
which corresponds to the dynamical system ẋ = Ax, is given by16

x(t) =
r
∑

i=1

exp(µit)ψ iν0,i, (10)

where µi and ψ i are the eigenvalues and eigenvectors of the propa-
gating operator A, ν0,i = 〈ψ i, x(0)〉 = ψ∗

i x(0), and

λi = exp(µi1t). (11)

In case of a damped oscillating system, when the system com-
prises natural frequencies ωi and damping ratios ζi, according to
(11), we have

µi = −ζiωi ± jωi

√

1 − ζ 2, j =
√

−1, (12)

from which we obtain

ωi =
∣

∣log(λi)
∣

∣

1t
, ζi = −<(log(λi))

ωi1t
. (13)

In case the system is undamped, ζ = 0 can be substituted into (12)
and (13).

Equation (8) constitutes a decomposition of the system in (1)
into its dynamic modes, such that λi and φi hold the temporal and
spatial information, respectively. Yet, as described in Sec. I, obtain-
ing this decomposition might be hindered for a variety of reasons,
such as standing waves, one- or low-dimensional signals,16,48 and
observation noise (e.g., noise in the measurement equipment). Our
goal is to obtain a compact and reduced-order representation of the
system similar to Eq. (8), where the challenges mentioned above are
present. To accomplish this goal, we use delay-coordinates DMD as
detailed below.

IV. SPATIOTEMPORAL COUPLING IN

DELAY-COORDINATES DMD

In this section, we show that when DMD is applied to delay-
coordinates embedding (constituting the delay-coordinates DMD),
the strict separation of temporal and spatial information in repre-
sentations obtained by DMD as in (8) is violated. In other words, the
separation where the eigenvalues λi bear the temporal information
about the dynamical system and the modes φi represent the spa-
tial information no longer exists in delay-coordinates DMD. Then,
we show that this seemingly limiting spatial and temporal informa-
tion entanglement could be harnessed toward the selection of the

DMD components required for accurate and reduced-order char-
acterization of the dynamical system. Specifically, we formulate and
analyze the induced spatiotemporal structure of the eigenvalues and
modes that arise from delay-coordinates DMD, which we term aug-
mented DMD components. For simplicity, we divide the exposition
into two stages. First, an augmentation of one sample is considered
in Subsection IV A, followed by a generalization to augmentations
of several samples, which is presented in Subsection IV B.

We begin by formulating the augmentation, i.e., applying
delay-coordinates embedding to the observation matrices X and X′

in Eq. (3). Let X̂ and X̂′ denote the augmented observation matrices,
defined by

X̂ =





| | |
x̂0 x̂1 · · · x̂m−s−1

| | |





=











x0 x1 · · · xm−s−1

x1 x2 · · · xm−s

...
...

...
...

xs xs+1 · · · xm−1











∈ R
[n(s+1)]×[m−s],

X̂′ =





| | |
x̂1 x̂2 · · · x̂m−s

| | |





=











x1 x2 · · · xm−s

x2 x3 · · · xm−s+1

...
...

...
...

xs+1 xs+2 · · · xm











∈ R
[n(s+1)]×[m−s],

(14)

where s < m, s ∈ N is termed the augmentation number. In the
remainder of the paper, we use hats to denote either augmented or

augmented-related terms. Note that X̂ and X̂′ are Hankel matrices,
which are typical in delay-coordinates DMD.16,35,58

Same as in the exact DMD,16,48 X̂ and X̂′ are related through

X̂′ = ÂX̂, Â ∈ R
[n(s+1)]×[n(s+1)], (15)

or in vector form,

x̂k+1 = Âx̂k, x̂k, x̂k+1 ∈ R
n(s+1),

k = 0, . . . , m − s − 1.
(16)

Application of the exact DMD to X̂ and X̂
′
results in r̂ DMD

eigenvalue-mode pairs denoted by {λ̂l, φ̂l}
r̂

l=1, where r̂ = rank(X̂).
Then, similar to Eq. (8), the augmented observations x̂k can be
represented as

x̂k =
r̂
∑

l=1

λ̂k
l φ̂ lη̂0,l, k = 0, . . . , m − s − 1, (17)

where η̂0,l is the lth entry of η̂0 = 8̂
∗
x̂0 and 8̂ is the matrix whose

columns are the augmented DMD modes φ̂ l. Equation (17) can be
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written in a matrix form as

x̂k = 8̂ĉk,

8̂ =





| | |
φ̂1 φ̂2 · · · φ̂ r̂

| | |



 ∈ C
[n(s+1)]×r̂, (18)

ĉk =













λ̂k
1η0,1

λ̂k
2η0,2

...

λ̂k
r̂η0,r̂













∈ C
r̂.

In order to obtain a sufficient amount of augmented DMD compo-
nents for a full description of the dynamical system, r̂ must be at
least as large as the number of DMD components required for the
description of the unaugmented (original) system in (8); i.e., r̂ ≥ r.

Recalling that r̂ = rank(X̂) ≤ min (n(s + 1), m − s), fulfillment of
r̂ ≥ r depends on the choice of s. Concretely choosing s such that
n(s + 1) ≤ m − s leads to the range

0 ≤ s ≤ m − n

n + 1
. (19)

Conversely, the choice n(s + 1) ≥ m − s imposes r ≤ r̂ ≤ m − s,
which leads to

m − n

n + 1
≤ s ≤ m − r. (20)

In practice, as r = rank(X) is unknown prior to the application of
DMD, one can choose s ≤ m − n as the upper bound in (20).

By (16) and by recalling that Âφ̂ l = λ̂lφ̂ l, the expansion of the
augmented observations vector x̂k+1 is given by

x̂k+1 = Âx̂k =
r̂
∑

l=1

λ̂k
l λ̂lφ̂ lη̂0,l, (21)

which, using (18), can be recast in the matrix form as

x̂k+1 = 8̂3̂ĉk,

3̂ = diag[λ̂1, λ̂2, . . . , λ̂r̂] ∈ C
r̂×r̂.

(22)

Equations (17) and (21) show that the temporal propagation
of x̂k can be expressed using the augmented DMD components.

Specifically, multiplication of the augmented modes φ̂ l by their cor-

responding augmented eigenvalues λ̂l propagates x̂k one time step to
x̂k+1. Similarly, x̂k can be propagated q steps to x̂k+q by

x̂k+q = Âqx̂k = 8̂3̂qĉk, q = 0, . . . , s. (23)

A. Augmentation with one sample

When s = 1, x̂k ∈ R
2n can be written as x̂k = [xk, xk+1]

T, split-
ting it to the top and bottom n entries. Consequently, (18) can be

rewritten as

[

xk

xk+1

]

=
[

8̂
(0)

8̂
(1)

]

ĉk, (24)

where the columns of 8̂
(0) ∈ C

n×r̂ and 8̂
(1) ∈ C

n×r̂ are the top and

bottom n entries of the columns of 8̂. We term each column of 8̂
(0)

or 8̂
(1)

as a DMD sub-mode or, simply, sub-mode. Considering only
the top n entries in Eq. (24) yields

xk = 8̂
(0)

ĉk. (25)

On the one hand, Eq. (25) shows that xk can be expressed by

the r̂ columns of 8̂
(0)

. On the other hand, according to (9), it can be
represented using only the r ≤ r̂ columns of 8. Therefore, Eq. (25)
might not be a compact representation of xk, leading to the conjec-
ture that the application of delay-coordinates DMD results in two
types of DMD components—those that describe the dynamical sys-
tem (true) and those that are not related to it and are an artifact of
the augmentation (spurious). By applying similar considerations to
the bottom n entries in (24), the same conjecture can be made for

xk+1 and 8̂
(1)

. In the following assumption, we make these conjec-
tures more precise. We note that this assumption is supported by an
empirical verification in Sec. VII.

Assumption 1: Without loss of generality, we write the matri-

ces 8̂
(j) ∈ C

n×r̂ as 8̂
(j) =

[

8̂
(j)

true, 8̂
(j)

spurious

]

, j = 0, 1, where the r left-

most columns 8̂
(j)

true ∈ C
n×r are termed true and the remaining r̂ − r

columns 8̂
(j)

spurious ∈ C
n×[r̂−r] are termed spurious. Assume that the

matrix 8̂
(j)

true has full column rank r and that its column space spans
the space of observations {xk}.

In other words, we assume that the r leftmost columns of 8̂
(0)

are the ones required for the compact reduced-ordered representa-
tion of xk (hence, true), while the rest r̂ − r columns are redundant
(hence, spurious). According to (9) and by Assumption 1, implying

that the columns of 8̂
(0)

true are linearly independent, xk can be rep-

resented using only the r true columns of 8̂
(0)

and their respective
eigenvalues.

Now, consider x̂k+1 ∈ R
2n, which for s = 1 is x̂k+1 = [xk+1,

xk+2]
T. Then, from (22) and by splitting 8̂, 3̂ and ĉk to their true

and spurious parts as above, we have

[

xk+1

xk+2

]

=





8̂
(0)

true, 8̂
(0)

spurious

8̂
(1)

true, 8̂
(1)

spurious





[

3̂true 0

0 3̂spurious

][

ĉ
true
k

ĉ
spurious

k

]

, (26)

where 3̂true = diag[λ̂1, . . . , λ̂r], 3̂spurious = diag[λ̂r+1, . . . , λ̂r̂], and

ĉ
true
k , ĉ

spurious

k denote the r and r̂ − r expansion coefficients that
correspond to the true and spurious components, respectively.

Under Assumption 1, xk+1 can be represented using only the
true parts of (24) and (26) as

xk+1 = 8̂
(1)

trueĉ
true
k , xk+1 = 8̂

(0)

true3̂trueĉ
true
k . (27)
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Consequently, by equating the right-hand side (RHS) terms of
Eq. (27), we have

[

8̂
(1)

true − 8̂
(0)

true3̂true

]

ĉ
true
k = 0, k = 0, . . . , m − s − 1. (28)

Proposition 2: For distinct augmented DMD eigenvalues λ̂l,

8̂
(1)

true = 8̂
(0)

true3̂true. (29)

Note that assuming distinct DMD eigenvalues is a common
practice.25,49,62

Proof. Denote Ĉ ∈ C
r×[m−s] as a matrix whose columns are

ĉ
true
k , k = 0, . . . , m − s − 1. Based on the definition of ĉk in Eq. (18),

Ĉ can be recast as a product of a diagonal matrix η̂0 ∈ C
r×r and a

[m − s]th order Vandermonde matrix V̂
m−s

and (λ̂1, . . . , λ̂r) ∈ C
r×[m−s],

both consisting of the r true DMD eigenvalues, as

Ĉ =







| | |
ĉ

true
0 ĉ

true
1 · · · ĉ

true
m−s−1

| | |







=











η̂0,1 0 · · · 0
0 η̂0,2 · · · 0

0 0
. . . 0

0 0 · · · η̂0,r























1 λ̂1 (λ̂1)
2 · · · (λ̂1)

m−s−1

1 λ̂2 (λ̂2)
2 · · · (λ̂2)

m−s−1

...
...

...
. . .

...

1 λ̂r (λ̂r)
2 · · · (λ̂r)

m−s−1













= η̂0V̂
m−s

and (λ̂1, . . . , λ̂r). (30)

For distinct DMD eigenvalues, the rank of V̂
m−s

and (λ̂1, . . . , λ̂r)

is min(r, m − s).56 Since r ≤ m − s [see Eq. (20)], rank
(

V̂
m−s

and

(λ̂1, . . . , λ̂r)

)

= r. For a non-trivial representation of the dynam-

ical system, i.e., η̂0,l 6= 0, l = 1, . . . r, we have that rank
(

η̂0

)

= r.

Consequently, rank(Ĉ) = r.

For convenience, we define 1 = 8̂
(1)

true − 8̂
(0)

true3̂true. As the

columns of Ĉ are in the subspace of the solutions to Eq. (28),
then dim

(

ker (1)
)

= r. By the rank-nullity theorem, the rank of
the matrix 1 equals to the matrix’s number of columns r minus
the dimension of its null space, i.e., dim

(

ker (1)
)

= r. There-

fore, rank (1) = 0, implying that1 = 0. Hence, 8̂
(1)

true = 8̂
(0)

true3̂true,
yielding Eq. (29). �

Denote the columns of 8̂
(0)

true and 8̂
(1)

true by φ̂
(0)

l and φ̂
(1)

l , respec-

tively. Their consideration along with λ̂l in 3̂true in (29) yields

φ̂
(1)

l = φ̂
(0)

l λ̂l, l = 1, . . . , r. (31)

Proposition 2 and Eq. (31) show the spatiotemporal coupling in
delay-coordinates DMD for the special case of s = 1. In this case, the

sub-modes φ̂
(0)

l , φ̂
(1)

l ∈ C
n that comprise the true augmented mode

φ̂ l ∈ C
2n are related to one another through the corresponding true

eigenvalue λ̂l of Â. The general relations for augmentation with
more than one sample are presented in Subsection IV B.

B. Augmentation with several samples

In case s > 1, two observation vectors that are augmented s
times, denoted by x̂k, x̂k+q ∈ R

n(s+1), are considered. Then, from
Eqs. (18) and (23), we have

x̂k =

















xk

...
xk+j

...
xk+s

















=





















8̂
(0)

...

8̂
(j)

...

8̂
(s)





















ĉk,

x̂k+q =

















xk+q

...
xk+q+i

...
xk+q+s

















=





















8̂
(0)

...

8̂
(i)

...

8̂
(s)





















3̂qĉk,

(32)

where the matrix 8̂ in Eqs. (18) and (23) is viewed as a column-

stack of s + 1 “sub-modes” matrices 8̂
(0)

, . . . , 8̂
(s)

, each of dimen-
sions n × r̂. Without loss of generality, we assume that j = q + i,
i, j = 0, . . . , s. Thus, both x̂k and x̂k+q in (32) contain the same
unaugmented observation xk+j = xk+q+i. Similarly to the case of
s = 1, by equating the true components of the RHS terms in (32) that
correspond to xk+j and xk+q+i and substituting j = q + i, we have

[

8̂
(j)

true − 8̂
(i)

true3̂
j−i
true

]

ĉ
true
k = 0, k = 0, . . . , m − s − 1. (33)

Next, we generalize Assumption 1 and Proposition 2 for augmenta-
tion with more than one sample, where the spatiotemporal coupling
in delay-coordinates DMD is bounded from above by B, which is
defined and explained in the sequel in Eq. (40).

Assumption 3: The matrices 8̂
(j)

true, j = 0, . . . , B, comprising

the r leftmost columns of 8̂
(j)

, are assumed to have full column
ranks and that the column space of each of them spans the space of
observations {xk}.

The division of 8̂ into 8̂
(j)

true ∈ C
n×r and 8̂

(j)

spurious ∈ C
n×[r̂−r],

j = 0, . . . , B, as in Assumptions 1 and 3, is illustrated in Fig. 1(a).

Proposition 4: For distinct augmented DMD eigenvalues λ̂l,

8̂
(j)

true = 8̂
(i)

true3̂
j−i
true, i, j = 0, . . . , B. (34)

We omit the proof because it is similar to the proof of
Proposition 2.

Consideration of φ̂
(i)

l and φ̂
(j)

l , which are the respective ith and

jth sub-modes of the true, augmented modes φ̂ l [i.e., the columns

of 8̂
(i)

true and 8̂
(j)

true in (34), respectively], as well as λ̂l in 3̂true,
l = 1, . . . , r, leads to

φ̂
(j)

l = φ̂
(i)

l λ̂
j−i

l , i, j = 0, . . . , B, l = 1, . . . , r. (35)

The spatiotemporal coupling in delay-coordinates DMD, gen-
erally presented in Proposition 4 and Eq. (35), reveals that the true,
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FIG. 1. (a) Division of 8̂, whose columns are the augmented DMD modes φ̂l , into 8̂true ∈ C
[n(s+1)]×r and 8̂spurious ∈ C

[n(s+1)]×[r̂−r ]. The columns of the former and latter
are the r true and r̂ − r spurious augmented DMD modes, respectively. (b) Illustration of the spatiotemporal coupling in delay-coordinates DMD, according to Proposition 4
and Eq. (35).

augmented modes φ̂ l contain not only spatial information, but also

temporal information given by λ̂l. Importantly, by Proposition 4,
this coupling is exhibited only by the true DMD components. In
contrast, the considerations leading to this property do not apply to
the spurious DMD components, and, therefore, they lack this cou-
pling. This spatiotemporal coupling can be written more explicitly
using (35), e.g., as

φ̂ l =























φ̂
(0)

l

φ̂
(1)

l

φ̂
(2)

l

...

φ̂
(j)

l























=























φ̂
(0)

l

φ̂
(0)

l λ̂l

φ̂
(0)

l λ̂2
l

...

φ̂
(0)

l λ̂
j

l























,

j = 0, . . . , B, (36)

l = 1, . . . , r

and is illustrated in Fig. 1(b), showing a zoom-in on the single aug-

mented DMD mode φ̂ l. Alternatively, one can obtain the augmented
DMD eigenvalue through (35) by

λ̂l =
(

φ̂
(j)

l

φ̂
(i)

l

)

1
j−i

,

i, j = 0, . . . , B, i 6= j, (37)

l = 1, . . . , r.

Thus far, we claimed that the spatiotemporal coupling in
Eqs. (34)–(37) holds for augmentation numbers bounded from

above by B. Now, we present this upper bound explicitly and show
that it depends on the oscillation frequencies of the underlying
continuous-time dynamical system, ωl. The existence of the upper
bound B stems from the Nyquist–Shannon sampling criterion63,64

provided that the sampling frequency ωs is sufficiently high, i.e.,
ωl ≤ 0.5ωs for every ωl of the system.

By substituting 1t = 2π/ωs into (13), the relationship between

the DMD eigenvalue λ̂l and the oscillation frequency ωl is

λ̂l = exp(ωl1t) = exp

(

ωl

0.5ωs

π

)

. (38)

Therefore, taking powers p ∈ R of λ̂l results in

λ̂
p

l =
(

exp

(

ωl

0.5ωs

π

))p

= exp

(

pωl

0.5ωs

π

)

. (39)

Namely, λ̂
p

l corresponds, in effect, to a frequency that is p-times

faster than the continuous time counterpart of λ̂l, i.e., pωl. So,
the Nyquist–Shannon sampling criterion for this frequency is

FIG. 2. Two degrees of freedom oscillator, comprised of two masses,m1 andm2,
connected via two springs.
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FIG. 3. The two-mode sine signal in Eq. (47), depicted as the black solid line
(original signal). The blue dashed line depicts the reconstructed signal according
to Algorithm 1 and Eq. (46).

pωl ≤ 0.5ωs, which provides the constraint p ≤ 0.5ωs/ωl. Accord-
ingly, we define

B(ωl) = min

(

s,

⌊

0.5ωs

ωl

⌋)

, (40)

where b·c is the floor function.
In terms of Eq. (36) and as illustrated in Fig. 1(b), λ̂

j

l relates

the zeroth sub-mode of φ̂l to its jth sub-mode, where φ̂ l represents
the lth DMD mode that corresponds to the oscillation frequency ωl.

Additionally, according to Eq. (39), λ̂
j

l represents a j-times faster

FIG. 4. (a) Polar representation of the augmented DMD eigenvalues, λ̂l , that
arise from an application of the exact DMD algorithm to the observations {xk}100k=0

sampled from signal (47), which were augmented s = 11 times. The black line

denotes the unit circle. (b) The oscillation frequencies, ωl , that correspond to λ̂l

through Eq. (13). The true eigenvalues that are related to the system’s harmon-
ics (ω

sys

1 = 3 rad/s and ω
sys

2 = 5 rad/s) are marked by blue circles, while the red
crosses mark the spurious eigenvalues that are not related to them.

frequency than λ̂l, and is utilized by the spatiotemporal coupling
in delay-coordinates DMD in Proposition 4. Consequently, this
spatiotemporal coupling exists only for values of j that satisfy the
Nyquist–Shannon sampling criterion (i.e., j = 0, . . . , B). In other

words, λ̂
j

l for j > 0.5ωs/ωl represents a frequency that is sampled at
a sub-Nyquist rate and, therefore, does not capture the underlying
dynamics.

FIG. 5. Polar representation of the computed eigenvalues λ̃
(j)

1 , λ̃
(j)

3 , λ̃
(j)

9 , j = 1, . . . , 11, obtained from Eq. (41). The black lines denote the unit circle. According to the bound

B(ωl) in Eq. (40), which is valid only for true DMD components, the first 10 (a) and 6 (b) values of the true λ̃
(j)

1 and λ̃
(j)

3 , respectively, are the same. These values are denoted

by blue circles, which coincide with each other 10 times in (a) and 6 times in (b). Contrarily, the remaining eleventh value λ̃
(11)
1 in (a), and the five remaining values λ̃

(j)

3 ,

j = 7, . . . , 11 in (b), which are marked by blue dots, differ from one another and from the true λ̂1 or λ̂3. (c) Repeated computations of λ̃
(j)

9 that yield different values, since
the relations in Proposition 4 do not hold for spurious DMD components.
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We showed that the sub-modes within an augmented mode
are related to each other through the corresponding eigenvalue [see
Proposition 4, Eq. (35) and Fig. 1(b)]. We refer to these relations as
the spatiotemporal coupling in delay-coordinates DMD. That is, an
augmented DMD mode holds temporal information in addition to
the spatial information. In addition, we show empirically in Sec. VI
that the spurious components do not have this coupling. In Secs. V,
VI, and VII, we utilize the spatiotemporal coupling for selection of
the true DMD components and further representation and charac-
terization of dynamical systems from observations, even when the
observations are corrupted with noise.

V. PROPOSED METHOD

Based on the spatiotemporal coupling in delay-coordinates
DMD presented in Proposition 4, we propose a method for obtain-
ing a compact and reduced-order representation of the observations
that is analogous to Eq. (8). As discussed in Sec. IV, representa-
tion (8) cannot be directly obtained from applications of DMD
algorithms to delay-coordinates embedding due to two challenges:
(a) the possible existence of both true and spurious augmented
DMD components and (b) the existence of redundant sub-modes
comprising every augmented DMD mode, which are unnecessary
for the representation. Both challenges must be addressed to obtain
the desired compact representation, i.e., the selection of the true
augmented DMD modes, followed by the selection of the relevant
sub-modes within the true modes.

To the best of our knowledge, challenge (a) is not addressed
in the current literature in the context of delay-coordinates DMD.
In the more general context of the Koopman operator, Pan et al.
suggested a framework, which is based on multi-task feature learn-
ing, for the extraction of the most informative Koopman-invariant
components and the pruning of the redundant components by
penalizing departure from linear evolution.21 A common practice
to address challenge (b) is to choose the first n entries in each
selected augmented DMD mode, ignoring its spatiotemporal cou-
pling. Therefore, we propose a method that considers the spatiotem-
poral coupling in Proposition 4 and selects the DMD components

FIG. 6. The absolute errors, εl , between the averaged eigenvalues 〈λ̃l〉 in

Eq. (42) and their corresponding DMD eigenvalues, λ̂l [see Eq. (43)]. The true

eigenvalues, λ̂1, . . . , λ̂4 are marked by blue circles, and the spurious eigenval-

ues, λ̂5, . . . , λ̂12, are marked by red crosses. The absolute errors of the spurious

λ̂l are larger by at least 10 orders of magnitude than those of the true λ̂l , providing
a clear distinction between the true and spurious DMD eigenvalues. The markings
of the blue circles and red crosses were obtained in a unsupervised manner using
Algorithm 1.

required for compact representations of dynamical systems. Our
method is detailed in this section and summarized in Algorithm 1.
An empirical comparison between our method and the maximal
amplitudes method is conducted in Sec. VII, where the superiority of
our method is demonstrated in case the observations are corrupted
with high levels of noise.

Our method begins by augmenting the observations s times,
and applying the exact DMD to them. Generally, the augmentation
number s can be chosen either in the range prescribed in (19) or in

ALGORITHM 1. Proposed algorithm.

Input: Observations {xk}m
k=0 of a dynamical system.

Output: Compact and reduced-order spectral representation of the observations.

1. Augment the data s times according to the range in (20), apply the exact DMD algorithm to the augmented observations, and extract the

augmented DMD eigenvalue-mode pairs, λ̂l and φ̂ l, respectively.

2. Calculate the oscillations frequencies ωl that correspond to each augmented DMD eigenvalue λ̂l using Eq. (13).
3. Compute the bound B(ωl) in Eq. (40) for each ωl.

4. Compute the averaged eigenvalues 〈λ̃l〉 by Eq. (42).

5. Calculate the absolute errors, εl, between the averaged computed eigenvalues, 〈λ̃l〉, and their corresponding (non-averaged) DMD

eigenvalues, λ̂l, as in Eq. (43).
6. Partition εl into two subsets using k-means with k = 2, and compute the average values of each subset, as in (44). Select the averaged

eigenvalues (and their corresponding modes) related to the subset corresponding to the smaller average value.
7. Use the selected DMD components for building a compact and reduced-order spectral representation of the observations, according

to Eq. (46).
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(20). Yet, the empirical evidence presented in Sec. VII shows that
s should be chosen according to (20). Next, the DMD eigenvalue-

mode pairs, λ̂l and φ̂ l, respectively, are extracted, followed by a
calculation of the oscillation frequencies ωl by (13), as well as the
bounds B(ωl) that correspond to each ωl by (40).

To identify the true components out of all the obtained DMD
components, we propose to utilize Eq. (37), where the identifi-
cation proceeds as follows. The same eigenvalue λ̃l is repeatedly
computed via substitution of different i and j values in Eq. (37).
For example, by setting i = 0 and j = 1, . . . , B(ωl), the eigenvalue

λ̃l can be computed multiple times by taking the quotients of the
sub-modes as

λ̃
(j)

l =
(

φ̂
(j)

l

φ̂
(0)
l

)
1
j

, j = 1, . . . , B(ωl), (41)

where a tilde denotes a computed entity and the superscripted index

(j) in λ̃
(j)

l denotes the jth computation of this eigenvalue. As stated
in Proposition 4, the spatiotemporal coupling in delay-coordinates
DMD holds only for true DMD components. Hence, any jth com-
putation of any lth true eigenvalue according to (41) yields the same
value (in a noise-free system). Moreover, this value is identical to

the DMD eigenvalue, i.e., λ̃
(j)

l = λ̂l, for l = 1, . . . , r. Conversely, such
computations of spurious DMD eigenvalues, for l = r + 1, . . . , r̂, are
expected to yield different computed results upon substitution of

varying values of j in (41), as well as results that differ from λ̂l. There-
fore, (41) contains information that enables the distinction between
true and spurious DMD components.

In the presence of observation noise, the identification of true
DMD components through (41) can be enhanced by introducing an

averaged computed eigenvalue, 〈λ̃l〉, e.g., as

〈λ̃l〉 = 1

B(ωl)

B(ωl)
∑

j=1

λ̃
(j)

l . (42)

In case ωl > 0.5ωs, then B(ωl) = 0. This scenario can occur, e.g.,
when s is chosen to be very large, which, in turn, might produce a
very large ωl. Since the sampling rate admits the Nyquist–Shannon
sampling criterion for the true oscillation frequencies, such ωl must
be related to a spurious eigenvalue. Therefore, when B(ωl) = 0, we
consider the eigenvalue corresponding to ωl as spurious and remove
it from the computation in (42).

FIG. 7. The medians of the absolute errors, ε̃1, for augmentation numbers s = 10, 20, . . . , 360 and SNR values of 15, 10, 5, 0 dB. The blue circles and red crosses denote
ε̃1 computed based on our and the maximal amplitudes methods, respectively. The whiskers denote the 25th and 75th percentiles of ε1.
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A noteworthy drawback of DMD is its sensitivity to observa-
tion noise.41,65 Different approaches, which are more sophisticated
than Eq. (42), tackled this issue. For example, noise-corrected DMD,
forward-backward DMD, total least-squares methods,28,66 and vari-
ational formulations,67 to name but a few. Overall, the sensitivity of
DMD to noise-corrupted data still remains an open problem.68

Thereafter, the absolute errors, εl, are calculated by

εl =
∣

∣

∣
〈λ̃l〉 − λ̂l

∣

∣

∣
, (43)

providing an estimation for the difference between the augmented
DMD eigenvalue and the average of the eigenvalues computed based
on the spatiotemporal coupling in Proposition 4. Alternatively, the
absolute errors can be defined as the average of the absolute differ-

ences between computed eigenvalues λ̃
(j)

l and their corresponding

DMD eigenvalue λ̂l. We note that this definition yields similar
empirical results in the applications studied in this paper.

If the computed eigenvalues λ̃
(j)

l for j = 1, . . . , B(ωl) are dif-

ferent from λ̂l, then εl in Eq. (43) is large, which means that λ̂l is

spurious. Contrarily, if λ̃
(j)

l are approximately equal to λ̂l, then εl is

small, indicating that λ̂l is true. Therefore, εl, l = 1, . . . , r̂, can be

partitioned into two subsets, S1 and S2. Without loss of generality,
assume that S1 constitutes the first d values of εl, i.e., {ε1, . . . , εd}
∈ S1, where 1 ≤ d ≤ r̂, and that S2 contains the remaining r̂ − d
values, {εd+1, . . . , εr̂} ∈ S2. This partitioning can be carried out by
applying standard clustering algorithms to εl, e.g., k-means with
k = 2.

We choose the k-means algorithm because, on the one hand, it
is widely used, easy to implement, and does not assume any statisti-
cal model as a prior, and one the other hand, it is a centroid-based
clustering algorithm. Namely, it is suitable to perform the task of
separating two types of data points clustered around two centroids
that are related to the true and spurious DMD components.

After clustering, the average absolute errors of subsets S1 and
S2, 〈ε〉S1 and 〈ε〉S2 are computed as

〈ε〉S1 = 1

d

d
∑

l=1

εl, 〈ε〉S2 = 1

r̂ − d

r̂−d
∑

l=1

εl, (44)

and then, the smaller of 〈ε〉S1 and 〈ε〉S2 denotes the subset that con-
tains the εl related to the true DMD eigenvalues. The distinction
between small and large absolute errors was straightforward in the

FIG. 8. The medians of the absolute errors, ε̃2, for augmentation numbers s = 10, 20, . . . , 360 and SNR values of 15, 10, 5, 0 dB. The blue circles and red crosses denote
ε̃2 computed based on our and the maximal amplitudes methods, respectively. The whiskers denote the 25th and 75th percentiles of ε2.
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illustrative example (see Sec. VI, Fig. 6). We note that in case the val-
ues of εl that are related to the two types of components (true and
spurious) are small and relatively close to each other, the input of
the k-means algorithm can be scaled, e.g., by considering log10(εl)

rather than εl; this scaling enhances the difference between the two
types and alleviates their distinction via the k-means algorithm.

In some cases, the DMD components of dynamical systems
arise in complex conjugate pairs. In such cases, each complex conju-
gate pair represents the same characteristics of the system (e.g., the
same oscillation frequencies ωl). These pairs embody another degree
of redundancy, which can be exploited, for example, as follows.

Denote λ̂q as the complex conjugate of λ̂l. Then, similarly to (42),

an averaged eigenvalue 〈λ̃l,q〉, which accounts for this redundancy,
can be written as

〈λ̃l,q〉 = 1

2

(

〈λ̃l〉 + 〈λ̃q〉
)

, (45)

where an overline denotes a complex conjugate. As 〈λ̃l,q〉 is com-
puted over both l and q, the influence of noise on the observations
can be further diminished in these systems.

Lastly, once the subset of the true augmented DMD compo-
nents is identified using Eq. (44), the observations can be repre-
sented analogously to (8) as

xk =
|S1|
∑

l=1

〈λ̃l〉kφ̂
(0)

l σ̂0,l, (46)

where σ̂0,l = 〈φ̂ l, x̂0〉, |S1| is the cardinality of S1, and, without loss of
generality, we assume that S1 is the subset that contains the εl values

related to the true DMD eigenvalues 〈λ̃l〉.
We note that our method has two main shortcomings, which

we plan to address in future research. First, compared to mode selec-
tion based on maximal amplitudes, our method is computationally
heavier. Second, as shown in Sec. VII, our empirical study suggests
that the performance is sensitive to the choice of the augmenta-
tion number s. We plan to develop a systematic procedure to set
the augmentation number, as well as more efficient implementa-
tion schemes that mitigate the repeated computation of eigenvalue
decomposition. Additional future work may include the demonstra-
tion of our method on nonlinear and chaotic dynamical systems, as
well as on real-life measurements.

FIG. 9. Same as Fig. 7 but for ω1 of the quasiperiodic signal.
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FIG. 10. Same as Fig. 8 but for ω2 of the quasiperiodic signal.

VI. ILLUSTRATIVE EXAMPLE

By following the proposed algorithm (Algorithm 1) step
by step, we demonstrate the spatiotemporal coupling in delay-
coordinates DMD (formulated in Sec. IV) on an illustrative exam-
ple of a two-mode sine signal. More specifically, we show how
Proposition 4 facilitates the identification, in an equation-free man-
ner, of the DMD components required for the representation and
characterization of the signal. Evaluation is done by comparing the
true signal’s oscillation frequencies to the oscillation frequencies that
correspond to the DMD eigenvalues selected by our method. Our
method can also be visually evaluated through its signal reconstruc-
tion compared to the original signal, as shown in Fig. 3.

Consider the following two-mode sine signal:

x(t) = sin(ω
sys
1 t) + sin(ω

sys
2 t) + αn(t), (47)

where ω
sys
1 = 3 rad/s, ω

sys
2 = 5 rad/s, n(t) is an additive white stan-

dard Gaussian noise, and α = 10−12. Figure 2 shows a dynamical
system whose coordinate x(t) can represent such a signal. Specif-
ically, signal (47) can be viewed as the position of mass m1 in a
two degrees of freedom (DOF) oscillator, comprised of two masses,
m1 and m2, connected to each other via springs. We denote the

components that correspond to the system by the superscript sys,
i.e., ω

sys
1 and ω

sys
2 are the system’s harmonics.

The signal is sampled at the sampling rate ωs = 2π/1t
= 20π rad/s (corresponding to 10 Hz) and 101 samples (observa-
tions) {xk}100

k=0 are collected, shown by the solid black line in Fig. 3.
We begin the illustration by augmenting the observations with

s = 11. This choice of s is in accordance with the upper bound on
s in (20), yet it does not adhere to the lower bound in the same
equation. One of the main purposes of this section is to demonstrate

FIG. 11. Three degrees of freedom oscillator, comprised of three masses
m1 = 1 kg, m2 = 2 kg, m3 = 3 kg, connected via three springs of constants
k1 = k2 = 50 N/m, k3 = 75 N/m. The system is subjected to the initial con-
ditions x1(0) = 1m, x2(0) = 2m, x3(0) = 3m, ẋ1(0) = ẋ2(0) = ẋ3(0) = 0,
giving rise to its oscillations.
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that Proposition 4 holds for true DMD components and up to the
bound B(ωl). Consequently, we choose s = 11, which is a value that,
on the one hand, demonstrates these two statements for system (47),
and on the other hand, provides a small enough number of eigenval-
ues that can be conveniently visualized. That is, this choice is made
merely for illustrative purposes.

The exact DMD algorithm is applied to the augmented obser-
vations, resulting in s + 1 = 12 augmented DMD eigenvalue-mode

pairs, {λ̂l, φ̂l}
12

l=1. Figure 4(a) presents the polar representation of λ̂l,
and Fig. 4(b) shows the oscillation frequencies, ωl (corresponding
to the eigenvalues by Eq. (13)), sorted in ascending order. It can be
observed in Fig. 4(a) that the DMD eigenvalues of this signal arise in
complex conjugate pairs. Moreover, these eigenvalues are distinct,
satisfying the condition of Propositions 2 and 4.

Since the signal is composed of two oscillation frequencies, ω
sys
1

and ω
sys
2 , two complex conjugate DMD eigenvalue pairs λ̂1,2 and λ̂3,4

are related to these frequencies—these are the true eigenvalues and
they are marked by blue circles in Fig. 4. Indeed, Fig. 4(b) corrob-
orates them as true since they correspond to the frequencies 3 and
5 rad/s. Similarly, the remaining eight eigenvalues (and their cor-
responding modes) are spurious and are marked by red crosses in
Fig. 4.

Our goal of identifying the true DMD components required for
the system description in an equation-free manner can be visually
described via Fig. 4. Suppose the observations {xk}100

k=0 were obtained
from an unknown system, i.e., without the knowledge that 3 and
5 rad/s are the system’s harmonics. Then, the markings of the blue
circles and red crosses would be unknown as well. In this regard, our
goal would be the task of identifying the blue circles, which represent
the true DMD eigenvalues.

By Eq. (40), the bounds that correspond to the two system’s
harmonics are computed to be B(ω

sys
1 ) = 10 and B(ω

sys
2 ) = 6. Next,

we demonstrate Proposition 4 by showing that the spatiotemporal
coupling indeed holds up to these bounds. The choice of s = 11 is
the minimal value of s that can serve this purpose. As an example,

we consider the true eigenvalues λ̂1 and λ̂3, as well as the spurious

eigenvalue λ̂9. For each of them, we follow the eigenvalues compu-
tation in Eq. (41) eleven times; namely, we substitute j = 1, . . . , 11
for each of the three values l = 1, 3, 9 in Eq. (41). Figure 5 presents
the polar representations of these computed eigenvalues.

Figure 5(a) shows λ̃
(1)
1 , . . . , λ̃(10)

1 as blue circles and λ̃
(11)
1 as a

blue dot. As expected and according to B(ω
sys
1 ) = 10, the former 10

computed eigenvalues coincide with each other, and appear as a sin-
gle circle in Fig. 5(a). Moreover, a comparison between them and

FIG. 12. Same as Fig. 7 but for ω1 of the 3 DOF oscillator.
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their corresponding true DMD eigenvalue, λ̂1, reveals that λ̃
(1)
1 = . . .

= λ̃
(10)
1 = λ̂1. Contrarily, the 11th computed eigenvalue, λ̃

(11)
1 , dif-

fers from them, as expected, since its index exceeds the upper bound
B(ω

sys
1 ) = 10.

Similarly, Fig. 5(b) shows λ̃
(1)
3 , . . . , λ̃(6)

3 as blue circles and

λ̃
(7)
3 , . . . , λ̃(11)

3 as blue dots. As B(ω
sys
2 ) = 6, the former 6 computed

eigenvalues coincide with each other and appear as a single circle in

Fig. 5(b). Further comparison confirms that λ̃
(1)
3 = · · · = λ̃

(6)
3 = λ̂3.

On the other hand, λ̃
(7)
3 6= · · · 6= λ̃

(11)
3 6= λ̂3. That is, relations (41)

are indeed valid for true DMD components and up to B(ωl).
Finally, Fig. 5(c), which relates to the spurious DMD eigenvalue

λ̂9, depicts the 11 computed eigenvalues λ̃
(1)
9 , . . . , λ̃(11)

9 , which are dif-

ferent from each other. This difference indicates that λ̂9 is spurious,
as relations (41) are not valid for spurious DMD components.

To conclude the demonstration in Fig. 5, we showed that only
true DMD components adhere to the spatiotemporal coupling in
delay-coordinates DMD in Proposition 4 and only up the bound
B(ωl) in Eq. (40).

Next, we exploit this spatiotemporal coupling in order to iden-
tify the true DMD components required for compact representation
of the dynamical system. Accordingly, we compute all the averaged

eigenvalues, 〈λ̃l〉, l = 1, . . . , 12, via Eq. (42), followed by a calculation
of their absolute errors, εl, by Eq. (43). Figure 6 shows εl for each

of the 12 eigenvalues in this illustrative example, where λ̂1, . . . , λ̂4

are the true eigenvalues marked by blue circles, and the rest are the
spurious eigenvalues marked by red crosses. Evidently, the absolute

errors of λ̂1, . . . , λ̂4 are smaller by at least 10 orders of magnitude
than the absolute errors of the spurious eigenvalues. Consequently,
the true and spurious eigenvalues can be easily distinguished by
visual inspection based on Fig. 6.

To implement this identification in an unsupervised fashion,
εl are clustered into two subsets, S1 and S2, using the k-means
algorithm with k = 2. The resulting clusters are {ε1, . . . , ε4} ∈ S1

and {ε5, . . . , ε12} ∈ S2. Next, the respective average absolute errors
of S1 and S2 are computed, namely, 〈ε〉S1 and 〈ε〉S2 , according to
(44). In this example, 〈ε〉S1 ≈ 10−15 and 〈ε〉S2 ≈ 10−3. Therefore,
subset S1, corresponding to the smaller value 〈ε〉S1 < 〈ε〉S2 is identi-
fied as the subset containing the εl that are related to the true DMD
eigenvalues.

Based on this identification, the original (sampled) signal is
reconstructed using Eq. (46). The accuracy of the reconstruction can
be observed in Fig. 3, which shows the original (black solid line)
and the reconstructed (blue dashed line) signals. We note that the

FIG. 13. Same as Fig. 7 but for ω2 of the 3 DOF oscillator.
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markings of the blue circles and red crosses in Fig. 6, as well as
the reconstructed signal in Fig. 3, were obtained in a completely
unsupervised and automatic manner using Algorithm 1.

To conclude, we emphasize that the input of our algorithm
is the samples (observations) of the system, where it operates in
an equation-free and unsupervised fashion to, eventually, extract a
reduced-order and optimal spectral representation of the system.

The code that reproduces the results in this section is openly
available in the following GitHub link (https://github.com/emilbron
stein/spatiotemporal_coupling_in_delay_coordinates_DMD).

VII. SIMULATION RESULTS

A. Two-mode sine signal

Consider the two-mode sine signal in Eq. (47). We exam-
ine noise with four different amplitudes α that correspond to the
SNRs 15, 10, 5, and 0 dB. We test the performance of the proposed
method (detailed in Sec. V and summarized in Algorithm 1) for the
augmentation numbers s = 10, 20, . . . , 360 and compare its DMD
components selection to the selection method based on maximal
amplitudes. For comparison purposes, we focus on the accuracy of
the recovery of the oscillation frequencies of the signal obtained

by the two methods. For a fair comparison, we set the number
of selected DMD components to 4 (2 oscillation frequencies that
appear in 2 complex conjugate pairs correspond to 4 DMD eigenval-
ues). Note that, in general, our method does not require the number
of DMD components as a prior, but infers it from the observations.

The recovery of the oscillation frequencies is evaluated by the
absolute errors, εi, between the system’s true oscillation frequencies
(ω

sys
1 and ω

sys
2 ) and the frequencies obtained from the DMD eigen-

values that were selected based on our and the maximal amplitudes
methods, denoted by the superscripts our and amp, respectively.
Namely, we calculate

εour
i =

∣

∣ω
sys
i − ωour

i

∣

∣ , ε
amp
i =

∣

∣ω
sys
i − ω

amp
i

∣

∣ . (48)

We repeat the calculations of εi 500 times, each time with a different
generated random noise, and compute the medians of the absolute
errors, ε̃i, as well as their 25th and 75th percentiles. Figure 7 con-
siders the first oscillation frequency, ω

sys
1 = 3 rad/s, and presents ε̃1

for different augmentation numbers s at different SNR values, where
the 25th and 75th percentiles of ε1 are denoted by whiskers. Figure 8
shows the same analysis for ω

sys
2 = 5 rad/s.

Figures 7 and 8 show that at the larger SNR values (15 and
10 dB), both ω

sys
1 and ω

sys
2 can be recovered with small errors based

FIG. 14. Same as Fig. 7 but for ω3 of the 3 DOF oscillator.
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FIG. 15. A damped oscillator comprised of mass m = 1 kg, which is connected
to a wall via a spring of stiffness k = 49 N/m, and a damper with a damping coef-
ficient c = 0.07 Ns/m. The mass is subjected to the initial conditions x(0) = 1m,
ẋ(0) = 2m/s, giving rise to its oscillations.

on both methods, given that s is chosen according to the range indi-
cated in (20) for our method, and in (19) for the maximal amplitudes
method.

Yet, this is not the case for the smaller SNR values. For SNR
value of 5 dB, the maximal amplitudes method is unable to recover

ω
sys
1 and ω

sys
2 with reasonable errors; namely, the frequencies are

obtained with either large error median or large error variance of εi.
Contrarily, our method recovers these frequencies with small errors
when the values of s are set in range (20). For SNR value of 0 dB, the
maximal amplitudes method leads to large error medians, whereas
our method obtains small error medians when the values of s are set
in range (20).

B. Quasiperiodic signal

Consider the following noisy quasiperiodic signal

x(t) = sin
(√

10t
)

sin(t) + αn(t), (49)

which can be recast as

x(t) = 1

2
cos

(

(
√

10 − 1)t
)

− 1

2
cos

(

(
√

10 + 1)t
)

+ αn(t), (50)

where n(t) is a white standard Gaussian noise with varying ampli-
tudes α that correspond to SNR value of 15, 10, 5, and 0 dB.

Similar to the two-mode sine signal simulation (Sec. VII A),
we test the capability to uncover the signal’s irrational frequencies
in (50) using our method and compare it with the maximal ampli-
tudes method. Figures 9 and 10 are the same as Figs. 7 and 8 but

FIG. 16. Same as Fig. 7 but for ωn of the damped oscillator.
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with respect to ω
sys
1 = (

√
10 − 1) rad/s and ω

sys
2 = (

√
10 + 1) rad/s,

respectively.
For both ω

sys
1 and ω

sys
2 , the maximal amplitudes method per-

forms well only at SNR value of 15 dB. However, at the other three
examined SNR values, the system’s frequencies are uncovered with
a large error variance (10 dB) or a large error median (5 and 0 dB).
Contrarily, our method uncovers ω

sys
1 with small errors at SNR = 15,

10, and 5 dB, and with small error median but with large variance at
0 dB. Also, using our method, ω

sys
2 is uncovered with small errors at

SNR = 15 and 10 dB, and small error median but with large variance
at 5 dB. At SNR = 0 dB, both methods fail to uncover ω

sys
2 .

C. Multi degrees of freedom oscillator

Consider an oscillator comprised of N masses m1, . . . , mN con-
nected by springs of constants k1, . . . , kN. The first mass m1 is
connected to a wall via the first spring k1, as depicted in Fig. 11 for
N = 3. The equations of motion of this system are given by

Mẍ(t) + Kx(t) = 0,

where

M =











m1 0 · · · 0
0 m2 · · · 0
...

...
. . .

...
0 0 · · · mN











,

K =











k1 + k2 −k2 0 · · · 0
−k2 k2 + k3 −k3 · · · 0

...
. . .

. . .
. . .

...
0 0 0 −kN kN











,

and x = [x1, x2, . . . , xN]T are the positions of the masses.
To excite motion, the system is perturbed from its rest state by

moving each mass to some initial position and then releasing them
all at once. Namely, the system is subjected to the initial conditions

x(t = 0) = [x0
1, x

0
2, . . . , x0

N]
T
, as well as to zero initial velocities of all

masses (ẋ(t = 0) = 0).
Here, we consider the 3 DOF oscillator in Fig. 11 (N = 3)

with the masses m1 = 1 kg, m2 = 2 kg, m3 = 3 kg, spring constants
k1 = k2 = 50 N/m, k3 = 75 N/m, initial positions x1(0) = 1 m,
x2(0) = 2 m, x3(0) = 3 m, and zero initial velocities ẋ1(0) = ẋ2(0)

FIG. 17. Same as Fig. 7 but for ζ of the damped oscillator.
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= ẋ3(0) = 0. In this case, the system’s natural frequencies are69

ω
sys
1 = 2.0626 rad/s,

ω
sys
2 = 7.6961 rad/s,

ω
sys
3 = 11.1363 rad/s.

(51)

Random noise drawn from a normal distribution with ampli-
tudes that correspond to SNR values of 40, 35, 30, and 25 dB is added
to the observations. Note that in this case, the SNR is computed with
respect only to the first mass. Then, same as in Fig. 7, the accuracy of
the recovery of frequencies (51) by our and the maximal amplitudes
methods is tested and presented in Figs. 12–14.

At all the examined SNR values, ω
sys
1 and ω

sys
2 can be recovered

with small errors using both methods. These results are similar for
ω

sys
3 at SNR values of 40 and 35 dB. However, the maximal ampli-

tudes method fails to uncover ω
sys
3 with reasonable errors at SNR

value of 30 dB, while our method successfully performs this task. At
SNR value of 25 dB, the maximal amplitudes method is unable to
uncover ω

sys
3 as well, whereas our method uncovers this frequency

with small error median and large error variance.

D. Damped oscillator

Consider a damped oscillator with a mass m = 1 kg, connected
to a wall via a spring with constant k = 49 N/m and a damper
with damping coefficient c = 0.07 Ns/m, as illustrated in Fig. 15.
These system parameters correspond to the natural frequency
ωn = 7 rad/s, damping ratio ζ = 0.005, and the frequency of

damped vibrations ωd = ωn

√

1 − ζ 2 = 6.9999 rad/s. The mass is
subjected to the initial conditions x(0) = x0 = 1 m,
ẋ(0) = v0 = 2 m/s, giving rise to oscillations, which induce the
following time response:69

x(t) = exp(−ζωnt)

(

v0 + ζωnx0

ωd

sin(ωdt) + x0 cos(ωdt)

)

. (52)

Random noise drawn from a normal distribution with ampli-
tudes that correspond to SNR values of 20, 15, 10, and 5 dB is added
to (52). The recovery accuracy of ωn and ζ obtained by our method
and the maximal amplitudes method is presented in Figs. 16 and 17,
respectively.

At SNR values of 20 and 15 dB, ωn and ζ are recovered with
small errors using both methods. At SNR values of 10 and 5 dB,
the maximal amplitudes method is unable to recover both ωn and ζ

with reasonable errors. Conversely, at these noise levels, our method
yields a recovery with errors at the order of 10−2 for ωn and 10−3

for ζ .

VIII. CONCLUSIONS

Delay-coordinates DMD is widely used for data-driven anal-
ysis of dynamical systems based on observations in a broad range
of fields. In this paper, we investigated two key questions con-
cerning the inherent redundancy that arises from the utility of
delay-coordinates DMD: the excess of dynamical components (i.e.,
spurious components) and the excess of dimensionality (i.e., coordi-
nates). We showed that delay-coordinates DMD induces a particular

structure on the augmented DMD components, consisting of a spa-
tiotemporal coupling. At first glance, this coupling seems to counter
the core idea underlying DMD, which facilitates a representation
of the system that decouples temporal and spatial patterns. Yet, a
deeper look allowed us not only to mitigate this coupling, but also
to exploit it. Based on the spatiotemporal coupling we presented,
we proposed a method for constructing a compact and improved
reduced-order DMD representation. Specifically, we showed how
to identify and select the informative (true) DMD components,
thereby addressing the excess of dynamical components. This iden-
tification is based on the induced temporal associations within each
augmented mode, which allowed us to address the redundancy in
dimensionality. We tested the proposed method on four dynami-
cal systems corrupted with noise and compared the performance
to the prevalent method, which is based on the maximal ampli-
tudes of the DMD modes. The results demonstrate the advantages of
the proposed method and imply that exploiting the spatiotemporal
structure becomes crucial at low SNR values (high levels of noise)
and gives a significant advantage over the maximal amplitudes
method, which is completely agnostic to it.
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