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Unsupervised Detection of Sub-Territories of the
Subthalamic Nucleus During DBS Surgery

With Manifold Learning
Ido Cohen , Dan Valsky , and Ronen Talmon , Senior Member, IEEE

Abstract—During Deep Brain Stimulation (DBS) surgery
for treating Parkinson’s disease, detecting the Subthalamic
Nucleus (STN) and its sub-territory called the Dorsolateral
Oscillatory Region (DLOR) is crucial for adequate clinical
outcomes. Currently, the detection is based on human ex-
perts, often guided by supervised machine learning detec-
tion algorithms. This procedure depends on the knowledge
and experience of particular experts and on the amount and
quality of the labeled data used for training the machine
learning algorithms. In this paper, to circumvent such de-
pendence and the inevitable bias introduced by the train-
ing data, we present a data-driven unsupervised algorithm
for detecting the STN and the DLOR during DBS surgery
based on an agnostic modeling approach. Given measure-
ments, we extract new features and compute a variant of
the Mahalanobis distance between these features. We show
theoretically that this distance enhances the differences
between measurements with different intrinsic character-
istics. Incorporating the new features and distance into a
manifold learning method, called Diffusion Maps, gives rise
to a representation that is consistent with the underlying
factors that govern the measurements. Since this repre-
sentation does not rely on rigid modeling assumptions and
is obtained solely from the measurements, it facilitates a
broad range of detection tasks; here, we propose a speci-
fication for STN and DLOR detection during DBS surgery.
We present detection results on 25 sets of measurements
recorded from 16 patients during surgery. Compared to a
supervised algorithm, our unsupervised method demon-
strates similar results in detecting the STN and superior
results in detecting the DLOR.
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I. INTRODUCTION

D EEP Brain Stimulation (DBS) is a treatment involving an
implanted stimulating device that sends electrical signals

to brain areas that are responsible for body movements. Once
the device is implanted in an appropriate position, DBS can
help to reduce the symptoms of tremor, slowness, stiffness,
and walking problems caused by several neuronal diseases,
such as Parkinson’s disease, dystonia, or essential tremor. More
specifically, we focus on the DBS of the Subthalamic Nucleus
(STN), which is a known and effective treatment for Parkinson’s
disease [1], [2]. During the surgical procedure to implant the
DBS lead, one important task is to detect the exact location of
the STN borders and a sub-territory within it, called Dorsolateral
Oscillatory Region (DLOR). In [3], [4], [5], [6], it was shown
that accurate detection of these regions contributes substantially
to the clinical benefit of STN-DBS.

The common procedure to detect the STN borders and the
DLOR consists of two steps. First, before the surgery, a coarse
approximation of the STN location is obtained based on Mag-
netic Resonance Imaging (MRI) and computed tomography
(CT) images. This coarse approximation facilitates the determi-
nation of a pre-planned trajectory to the target region. Second,
during the surgery, the exact detection of the target region
is based on Micro Electrode Recordings (MERs) of neuronal
activity along the pre-planned trajectory. The MERs are typi-
cally intricate and one needs to extract the relevant information
for the detection of the target regions. In general, most target
detection algorithms use prior knowledge on the data, such
as predefined models, hand-crafted features, and human expert
labels, in order to identify specific patterns that are indicative of
the target region. For example, existing methods rely on various
features extracted from the MERs, including the total power of
the signal [7], the oscillatory activity in the beta (13–30 Hz)
frequency band [8], [9], [10], and the high-frequency (> 500
Hz) neuronal “noise” [11], [12]. Then, based on such features,
as well as on human expert labels, supervised classifiers are
applied [13], [14], [15].
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Current detection methods suffer from the following inherent
shortcomings. First, the accuracy of supervised classifiers de-
pends on the amount of labeled data, which is typically small in
STN detection applications. Second, the hand-crafted features
that are used in the detection do not necessarily carry sufficient
information on the STN’s exact location. Third, the labels are
tagged by human experts, and therefore, naturally, are biased
toward their specific experience and knowledge.

In this work, to alleviate such shortcomings we develop a
data-driven unsupervised method and apply it to the STN and
DLOR detection tasks performed during DBS surgery. Our
method is based on an agnostic modeling approach that assumes
the measurements typically include many sources of variability,
where only a few of them are informative and facilitate the
detection of specific target regions of interest. We assume that
the measurements are the output of some unknown measurement
function of hidden variables, which represent the sources of
variability. We further assume that the hidden variables can
be divided into two classes. The first class consists of intrin-
sic variables, which are characterized by slow dynamics. The
second class consists of interference and noise variables, which
are manifested by high measurement variances. Our method
consists of three parts. In the first part, we present useful features
that can be computed from the measurements. In the second
part, we design a distance function between the features that
capture the difference between the (slow) intrinsic variables and
is invariant to the (fast) noise variables. Finally, in the third part,
by making use of Diffusion Maps [16], we construct a global
representation of the measurements and show that it is consistent
with the intrinsic variables. Our premise, which we support by
empirical evidence, is that the discovery of the intrinsic variables
is useful for modeling, in general, and for detecting regions of
interest, in particular.

The remainder of this paper is organized as follows. In Sec-
tion II, we present the proposed method in a general context, and
show both theoretically and in experiments that the proposed
method is able to reveal the intrinsic representation of the
measurements. In Section III, we propose a specification of the
method for the problem of STN and DLOR border detection,
yielding two purely unsupervised algorithms. We present the
detection results obtained by our algorithm and compare its per-
formance to existing supervised Hidden Markov Model (HMM)
based algorithms [13]. Finally, in Section IV, we discuss the
results and outline a few potential directions for future research.

II. METHOD - UNSUPERVISED STATE VARIABLES

APPROXIMATION

Our method is based on a setting consisting of measure-
ments of a stochastic dynamical system, obtained through some
unknown observation function. The propagation model of the
dynamical system is unknown, and the main assumption is
that the system is driven by a set of intrinsic variables. In
this section, we present an agnostic algorithm that builds a
new representation of these intrinsic variables from the system
measurements. The new embedding of the system’s intrinsic

variables facilitates accurate target detection of different system
regimes. We start with a description of the general setup, and then
we present our method and demonstrate it using simulations and
real measurements from a simple mechanical system. Finally, we
show a theoretical justification for our derivations. In Section III,
we show a utilization of the algorithm for the STN and DLOR
detection tasks.

A. Problem Formulation

Consider a system withN different states, and let yi(t) ∈ Rs

denote the measurements of the system at state i, where i =
1, . . . , N denotes the index of the state and t represents time.
Suppose that the measurements have two sources of variability.
The first source is governed by latent state variablesθi(t) ∈ Rd1

that characterize the system state. We assume that the evolution
in time of the state variables is a small perturbation of some
baseline value θ̄i ∈ Rd1 and is described by the following Itô
process:

dθi(t) = −∇Uθ̄i(θi(t))dt+ Id1×d1
dwi,θ(t), (1)

where the process drift is the gradient of the quadratic potential
functionUθ̄i(θ) =

1
2 (θ − θ̄i)�(θ − θ̄i) centered at the baseline

value θ̄i, wi,θ(t) is a vector of d1 independent Brownian mo-
tions, Id1×d1

is a d1 × d1 identity matrix, and (·)� represents
vector or matrix transpose.

The second source of variability is considered to be noise,
represented by latent variables ηi(t) ∈ Rd2 . Suppose that the
noise variables are characterized by high variability in time
compared to the variability of the state variables. Formally, the
evolution in time of the noise variables can be described by the
following Itô process:

dηi(t) = −∇Uη̄i(ηi(t))dt+ 1

ε
Id2×d2

dwi,η(t), (2)

where the drift is the gradient of a quadratic potential function
given by Uη̄i

(η) = 1
2 (η − η̄i)

�(η − η̄i), η̄i is an unknown
baseline constant, Id2×d2

is a d2 × d2 identity matrix,wi,η(t) is
a vector of d2 independent Brownian motions, and 0 < ε� 1.
Note that the variance of the diffusion term of the noise variables
in (2) is larger than the variance of the diffusion term of the
state variables in (1) by a factor of 1/ε2. We assume that
wi,θ(t) and wi,η(t) are independent. We remark that (1) and
(2) establish a prototypical propagation model of multi-scale
stochastic dynamical systems [17], [18], [19].

Suppose that the measurements are given by yi(t) =
f(θi(t),ηi(t)), where f : Rd → Rs is some smooth bi-
Lipschitz, possibly nonlinear, function and d = d1 + d2.

For notational convenience, we denote

xi(t) =

[
θi(t)

ηi(t)

]
,

and accordingly, we recast (1) and (2) as the following Itô process
in d dimensions:

dxi(t) = −∇U(xi(t))dt+ Λdwi(t), (3)

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on January 16,2024 at 08:52:48 UTC from IEEE Xplore.  Restrictions apply. 



1288 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 70, NO. 4, APRIL 2023

where U(x) is a quadratic potential function centered at x̄i, and

x̄i =

[
θ̄i

η̄i

]
,Λ =

[
Id1×d1

0

0 1
ε Id2×d2

]
, wi(t) =

[
wi,θ(t)

wi,η(t)

]
.

We assume that we have access to M measurements from each
state sampled in time on a discrete uniform grid. Accordingly, let
yi(tj) ∈ Rs denote the jth time measurement of the system at
state i, where tj = δt · j, j = {0, 1, 2, . . ..,M − 1}, and δt is the
sampling time interval. Our goal is to decouple the two sources of
variability, given the measurements yi(tj) without prior knowl-
edge of the system variables, and to build an embedding of the
system measurements that is consistent with the state variables.
Since the state variables can be viewed as a proxy of the true
state of the system, the ability to extract them may facilitate the
identification of particular desired system regimes and target
states. In the sequel, we will show how such an embedding sets
the stage for accurate, unbiased STN and DLOR detection.

The specification of this problem formulation in the context
of STN detection during DBS surgery is as follows. We measure
from N depths along the pre-planned trajectory and from each
depth we acquire M measurements, denoted by yi(tj), where
i is now the index of a specific depth. We assume that the
measurements are driven by two sources of variability. The first
source of variability is represented by the state variables θi(tj),
which are some unknown hidden variables that characterize the
STN region. The second source of variability is represented
by the noise variables ηi(tj). We do not have direct access to
the state variables depending on the region, nor to the noise
variables, and we measure them through some unknown possibly
nonlinear function f of

xi(tj) =

[
θi(tj)

ηi(tj)

]
.

We aim to build an embedding of the measurements yi(tj),
which represent the system state, and thereby, to identify in
a purely unsupervised manner the STN region. In order to
accomplish this goal, we devise a pairwise distance between
system states that satisfies:

d(zi, zl) ≈ α||θ̄i − θ̄l||2, (4)

where zi is some representation of the measured data
{yi(tj)}Mj=1 at the ith state and α is some constant.

B. Proposed Algorithm

We propose an unsupervised algorithm that is able to reveal
the relations between the system’s intrinsic variables without any
prior knowledge. In this sub-section we focus on the utilization
of our method relying on the analysis presented in Section II-E.
Broadly, the proposed algorithm consists of two main stages.
First, we represent each measurement by a set of features that can
be computed solely from measurements and devise a distance
function that achieves (4). Second, we apply a manifold learning
method, Diffusion Maps, that constructs a global representation
of the hidden state variables based on the proposed features and
distance function.

1) Features and Distance Function: First, for each set
of measurements {yi(tj)}Mj=1, we define features that can be
computed solely from the measurements:

ẑi =
1

M

M∑
j=1

yi(tj) (5)

Ĉi =
1

M − 1

M∑
j=2

[μi(tj)− μ̂i)][μi(tj)− μ̂i)]
� (6)

where we denote the increments between consecutive
measurements by μi(tj) = yi(tj)− yi(tj−1) and μ̂i =

1
M−1

∑M
j=2 μi(tj), so that ẑi is the empirical mean of the

measurements and Ĉi is the empirical covariance of the
measurement increments.

Second, we define a metric between these features, enabling
us to reveal the state variables. Particularly, we propose to use
the following modified version of the (squared) Mahalanobis
distance [20], [21]:

d(ẑi, ẑl) =
1

2
(ẑi − ẑl)�(Ĉ−1

i + Ĉ−1
l )(ẑi − ẑl). (7)

One of the main assumptions underlying our work is that the
latent state variables θi(t) are characterized by small perturba-
tions around some informative baseline value, whereas the noise
variables ηi(t) are characterized by high variance. In previous
work, e.g., in [20] and [19], it was shown that this variant of
the Mahalanobis distance implicitly attenuates hidden compo-
nents with high variance without prior knowledge, motivating
its utilization in our setting as well. In Section II-E, we show
theoretically that the proposed distance attenuates the influence
of the noise variables and gives rise to a distance between the
hidden state variables. In Section II-D and Section III, we present
empirical results that further support the usage of this distance.

2) Diffusion Maps: Manifold learning is a class of nonlinear
geometry-oriented dimensionality reduction methods [22], [23],
[24], [25]. For the purpose of finding a global parametrization
that embodies the relation between the system variables, we
use a kernel-based manifold learning technique called Diffu-
sion Maps [16], [26]. Typically in manifold learning, a high
dimensional data set that is assumed to lie on a low dimensional
manifold is given. This class of methods attempts to reveal the
intrinsic structure of the data set (the low dimensional manifold)
by preserving distances within local neighborhoods. Manifold
learning methods have been successfully applied to a broad
range of applications, e.g., the discovery of the latent variables of
dynamical systems [27], [28], earth structure classification [21],
image reconstruction [29], signal denoising [30], numerical sim-
ulation enhancement [31], fetal electrocardiogram analysis [32],
sleep stage identification [33], and time series filtering [34], to
name but a few. In the sequel, we will briefly review the method
in the context of our work.

Suppose that we have the features of N system states, i.e.,
(ẑi, Ĉi) for i = 1, . . . , N , computed from the measurements.
We denote by W the N ×N pairwise affinity matrix between
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Algorithm 1: The Proposed Algorithm.
Input: M measurements of N different states, i.e.,
{yi(tj)}Mj=1 ∈ Rs, i = 1, . . . , N .

Output: A low dimensional representation of each state
Ψi ∈ RP .
1) For each state i, compute the feature ẑi and the

covariance matrix Ĉi according to (5) and (6).
2) Build the pairwise affinity matrix W between all states

according to (8) and (7).
3) Compute the diffusion operator K according to (9)
4) Calculate the spectral decomposition of K and obtain

its eigenvalues {λl}N−1
l=0 and right eigenvectors

{ψl}N−1
l=0 .

5) Build a nonlinear mapping (embedding) of the system
state:

(ẑi, Ĉi) �→ Ψi = (ψ1(i),ψ2(i), . . .,ψP (i))

the features, whose (i, l)th element is given by:

Wi,l = exp

{
−d(ẑi, ẑl)

ε

}
, (8)

where the (squared) distance is defined in (7), and ε > 0 is the
kernel scale, usually set as the median of the pairwise distances.
We define a corresponding diffusion matrix K by:

Ki,l =
Wi,l

w(i)
, w(i) =

N∑
l=1

Wi,l (9)

We remark that several different normalizations of the affinity
matrixW were proposed in [26] and in related literature. In our
work, we tested different normalizations and constructed K as
presented since it yielded the best empirical results.

Based on the spectral decomposition of K, we build a global
representation of the system states as follows. Let λ0, . . ., λN−1

and ψ0, . . .,ψN−1 be the eigenvalues and eigenvectors of K,
respectively, written in descending order, so that λN−1 ≤ . . . ≤
λ0 = 1. Using the P eigenvectors corresponding to the largest
P eigenvalues, we define the following (nonlinear) map for each
state i to a P -dimensional space:

i �→ Ψi = (ψ1(i),ψ2(i), . . .,ψP (i)) ∈ RP .

Since this embedding of the data is based on an affinity that is
locally invariant to the noise variables, i.e., the corresponding
distance satisfies (4) (see Section II-E), we view it as a new repre-
sentation of the hidden state variables. We conclude this section
with a presentation of the proposed method in Algorithm 1.

C. Simulation Results

To illustrate the proposed algorithm, we consider the
following evolution of the state variable:

θi(tj+1)− θi(tj) = −(θi(tj)− θ̄i)Δt+
√
Δtwi,θ,

where wi,θ ∼ N(0, 0.09), Δt = 0.05, 1 ≤ j ≤ 250 and the
baseline values are given by

θ̄i =

⎧⎪⎨
⎪⎩
−5 for 1 ≤ i ≤ 10

10 for 11 ≤ i ≤ 20

50 for 21 ≤ i ≤ 30.

A realization of all the trajectories of the state variable θi(tj)
is shown in Fig. 1(a). In addition, we consider the following
evolution of the noise variable:

ηi(tj+1)− ηi(tj) = −(ηi(tj)− η̄i)Δt+
1

ε

√
Δtwi,η,

where wi,η ∼ N(0, 0.09), ε = 0.1, and the baseline values of
the noise are uniformly sampled from η̄i ∈ {0, . . . , 100}.

Suppose that the hidden variables (θi(tj), ηi(tj)) are observed
through the following non linear function f : R2 → R2:

yi(tj) = f(θi(tj), ηi(tj))

= (θ2i (tj) + 3η2i (tj), θ
2
i (tj)− η2i (tj)).

We note that this nonlinear observation function f satisfies
Assumption 1 that is presented in Section II-E. In Fig. 1(b)–(c),
we plot the two coordinates of the measurements yi(tj) in R2

for i = {1, . . . , 30}. For each state i, we computed the features
zi andCi based on the measurements yi(tj) and applied Algo-
rithm 1. In Fig. 1(d)–(f), we display a comparison between the
output of Algorithm 1 for P = 1, namely, ψ1(i), and the true
(inaccessible) baseline value θ̄i.

We can observe that the computed one dimensional embed-
ding has high correspondence with the hidden intrinsic base-
line state θ̄i, which can be approximated by a linear function:
φ1

i ≈ αθ̄i, α = 0.005, thereby achieving our main goal.
We remark that, in this specific example, our empirical results

suggest that the intrinsic state of the system can be captured
solely by the first leading eigenvector. However, in general,
the information on the intrinsic state is often manifested in
the first few leading eigenvectors. Therefore, subsequent high-
dimensional clustering, such as k-means, is typically applied to
the first leading eigenvectors. Importantly, such a generic clus-
tering stage does not consider the temporal order of the samples,
which is exploited in our algorithms presented in Section III.

D. Experimental Results on a Mechanical System

To further demonstrate the proposed method, we apply Algo-
rithm 1 to real measurements of a mechanical system. On the
one hand, we show here the recovery of the main properties
of the system from its observations in a data-driven manner
without prior knowledge of the system. On the other hand, this
particular mechanical system was chosen since it has a known
definitive characterization, which can serve as ground truth in
our experiment in order to assess and validate the empirical
results.

The mechanical system we consider consists of two masses,
m1 andm2, that are coupled with a spring with constant k2. Each
mass is connected to the ground with two additional springs,
each with constant k1. Let x1 and x2 denote the positions of the
two masses. An external force, denoted by F1, is applied to the
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Fig. 1. Illustration of our method on simulations. (a) The system’s hidden state variable θi(t) colored according to the baseline value θ̄i. (b)–(c)
The system’s measurements yi(t) = f(θi(t), ηi(t)) ∈ R2 colored according to their (hidden) baseline values θ̄i. These measurements serve as
the input data to our algorithm. (f) The one dimensional embedding ψ1(i) obtained by our suggested algorithm as a function of the state index. (e)
The true baseline values θ̄i (“the ground truth”) as a function of the state index. (f) A scatter plot that present the relation between the embedding
obtained by our suggested algorithm and the “ground truth”.

mass m1. A diagram of the mechanical system is presented in
Fig. 2(b).

The experiment comprised repeated trials. In each trial, the
values of the two masses were set from a predefined grid consist-
ing of 30 points, where m1 ∈ {0, . . . , 4} and m2 ∈ {0, . . . , 5}.
An external force (a square wave function) was used to invoke
the system using a voice-coil actuator. With an optic-laser sensor,
we measured the position of the massm2 over time. The duration
of each trial was 100 seconds and the sampling rate was 10 kHz.
Let gi(tj) denote the time-series of the measured signal at the
ith trial for tj = 1, . . . , 1, 000, 000.

In analogy to our setting, we have observations of a mechani-
cal system from 30 different states, where each state i is specified
by the values of the two masses m1 and m2.

Fig. 2(a) shows an example of the system measurements from
different states, colored by the sum of the masses.

We follow common-practice in manifold learning and apply a
pre-processing stage to the one dimensional time-series of obser-
vations. Specifically, we computed the spectrogram of each time
series using an analysis window of length 1000 with an overlap
of 500. Letyi(tj) ∈ Rs denote the resulting spectrogram at time
tj = 1 . . . ,M in state i = 1 . . . , N .

1) System Analysis: Using Newton’s law, the ODE that
describes the movement of each mass is given by:

m1ẍ1 = F (t)− 2k1x1 − k2(x1 − x2)− c1ẋ1

m2ẍ2 = −2k1x2 − k2(x1 − x2)− c2ẋ2.

We omit the dumping factor of each mass, namely, c1 and c2,
and recast the ODEs in a matrix form:[
m1 0

0 m2

][
ẍ1

ẍ2

]
+

[
2k1 + k2 k2

k2 2k1 + k2

][
x1

x2

]
=

[
F (t)

0

]

The modes of the system can be found by solving an eigenvalue
problem of the matrix K−1M , where

M =

[
m1 0

0 m2

]
, K =

[
2k1 + k2 k2

k2 2k1 + k2

]

The corresponding characteristic polynomial is:

det(K−1M − λI)

= det

[
(2k1 + k2) ·m1 − λ −k2 ·m1

−k2 ·m2 (2k1 + k2) ·m2 − λ

]

= [(2k1 + k2) ·m1 − λ] · [(2k1 + k2) ·m2 − λ)]

− k22 ·m1 ·m2

= λ2 − λ · (2k1 + k2) · (m1 +m2)− k22 ·m1 ·m2,

implying that the system has two degrees of freedom (the roots
of the characteristic polynomial), which are given by:

λ1,2 =
1

2
(2k1 + k2) · (m1 +m2)

± 1

2

√
(2k1 + k2)2 · (m1 +m2)2 + 4 · k22 ·m1 ·m2
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Fig. 2. Illustration of our method on a mechanical system. (a) An example of the input data to the algorithm: measurements of the location of
mass m2 over time. (b) A diagram of the mechanical system consisting of two coupled masses. (c) The two-dimensional embedding obtained by
Algorithm 1 (our method) colored by the sum of the masses. (d) The two-dimensional embedding obtained by a modified Algorithm 1 colored by the
sum of the masses, where the �2 norm is used instead of the Mahalanobis distance (see text for details).

=
1

2
(2k1 + k2) · (m1 +m2)

± 1

2
(2k1 + k2) · (m1 +m2)

×
√
1 +

4 · k22 ·m1 ·m2

(2k1 + k2)2 · (m1 +m2)2

Assuming that the springs remain constant during the experi-
ment, we note that the two modes of the system are governed
by the sum of the massesm1 +m2, since the term consisting of
their product m1 ·m2 is of smaller order of magnitude. This
implies that the hidden state variable in each trial could be
parameterized by θ̄i = m1 +m2.

2) Results: We apply Algorithm 1 to the input data
{yi(tj)}Mj=1. As a baseline, we apply a similar algorithm to
the same data, but instead of using the modified Mahalanobis
distance we use the Euclidean distance between the features zi
(in Step 2 of Algorithm 1, the affinity matrix W is computed
using ‖zi − zl‖22 instead of d(zi, zl)). Fig. 2(c)–(d) displays a
two dimensional representation of the measurements resulting
from the applications of the two algorithms. Fig. 2(c) shows the
results of Algorithm 1 and Fig. 2(d) shows the results of the
baseline algorithm. Each point in the figures represents a state
(trial). The points are colored by the corresponding value of
m1 +m2.

We observe that the two dimensional representation obtained
by Algorithm 1 is organized according to the sum of the masses

in each state, a result that is consistent with the analysis of
the system presented above. Moreover, we observe that using
the modified Mahalanobis distance rather than the Euclidean
distance between the features zi is critical for the recovery of
the true hidden state of the system.

E. Theoretical Analysis of the Extraction of the State
Variables

In this sub-section, we present the theoretical analysis sup-
porting the proposed method. We recall that our goal is to find
a pairwise distance between features of the measurements that
satisfies (4), thereby revealing the distance between the hidden
state variables. For this purpose, we compute a suitable set of
features for each set of measurements that carries sufficient
information about the state variables. Assuming that the process
yi(t) is stationary and ergodic and that we have an infinitely
large number of measurements from each state, the two features
in (5) and (6) can be recast as:

zi = E[yi(t)] (10)

Ci = Cov[μi(t)] = Cov[yi(t+ δt)|yi(t)]. (11)

Namely, the expected value of the Itô process measurements at
a specific state, and the covariance matrix of the measurement
increments. Then, as in (7), use a modified version of the
Mahalanobis distance [20] between the features:

d(zi, zl) =
1

2
(zi − zl)�(C−1

i + C−1
l )(zi − zl). (12)
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In the sequel, we show that this distance indeed reveals the
distance between the hidden state variables.

Our analysis is divided into two cases as follows.
1) Direct Access: In order to simplify the exposition, we

consider the case in which the measurements yi(t) have di-
rect access to system variables and are equal to xi(t) =
(θi(t),ηi(t)) ∈ Rd.

Proposition 1: Given xi(t) = (θi(t),ηi(t)) ∈ Rd, the mod-
ified Mahalanobis distance in (12) between the features
zi = E[xi(t)] using the covariance matrices Ci = Cov[xi(t+
δt)|xi(t)] can be written in terms of the Euclidean distance
between the underlying state variables as follows:

d(zi, zl) =
1

δt

[‖θ̄i − θ̄l‖2 +O(ε)
]
. (13)

See Appendix I for proof.
Proposition 1 implies that by assuming direct access to the

state and noise variables, the modified Mahalanobis distance
with the proposed features satisfies (4). Note that in this case,
although we have access to the system variablesxi(t), we do not
know which of them is a state variableθi and which is considered
noise. Our features and distance function enables us to separate
the two kinds of variables and to obtain a distance between the
state variables in an implicit manner without prior knowledge.

2) Non-Linear Measurements: We now consider the case
where the observations are a function of the system variables,
i.e., yi(t) = f(xi(t)), where f : Rd → Rs is some smooth bi-
Lipschitz function. Considering this case requires an additional
assumption on the function f and a small modification of the
features zi, which are described next. Note that in Appendix III,
we analyze a simpler case where f is linear.

Assumption 1: For any two realizationsxi andxl of state and
noise variables, we have:

(fkp1p2
(xi)− fkp1p2

(xl))
2

fkp1
(xi)fkp2

(xi) + fkp1
(xl)fkp2

(xl)
� 1, (14)

for 1 ≤ k ≤ s and 1 ≤ p1, p2 ≤ d, where the subscripts corre-
spond to partial derivatives, i.e., fkp = ∂fk

∂xp , fkp1p2
= ∂2fk

∂xp1∂xp2
,

and the superscripts correspond to specific elements in a vector,
i.e., fk : Rd → R is the k-th element of f .

Assumption 1 could be viewed as an additional smoothness
property of the observation function. This assumption holds for
functions that have small local changes in their gradient, and it
includes any second-order polynomial function.

Proposition 2: Given observations yi(t) = f(xi(t)), where
f : Rd → Rs is a smooth function satisfying Assumption 1, the
modified Mahalanobis distance with the features

zi = E

[
lim
δt→0

yi(δt+ t)− yi(t)

δt
+ yi(t)

]

Ci = Cov[yi(t+ δt)|yi(t)] (15)

can be expressed as:

d(zi, zl) = ‖θ̄i − θ̄l‖2 +O(‖yi − yl‖4) +O(ε). (16)

See Appendix II for proof.
Note that in the non-linear case, our theoretical analysis (see

derivation in Appendix II) suggests using a feature zi (15) that

is different from the one suggested in (10). We show in the
sequel that in practice when we estimate the features from the
measurements, these two features coincide. Both Proposition 1
and Proposition 2 imply that, either with direct access or through
some unknown observation function, the modified Mahalanobis
distance between the proposed features reveals the distance
between the state variables and attenuates the contribution of
the noise variables. We conclude this subsection with a couple
of remarks.

Remark 1: In the specific case wheref is the identity function,
i.e., f(x) = x, different features zi can be computed: either
(10) or (15)). Indeed, using the additional prior information of
having direct access to the state and noise variables leads to a
better approximation in Proposition 1 compared to Proposition
2. In the sequel, we will show that in practice the two definitions
of zi coincide.

Remark 2: Our method relies on the modified Mahalanobis
distance proposed in [20]. In [19], this distance was used and
analyzed in the context of temporal data stemming from a multi-
scale dynamical system. The theoretical and algorithmic parts of
the present work extend [20] and [19] in two main aspects. First,
our work considers a different model than the models considered
in [20] and in [19]. Here, the model consists of controlling vari-
ables, which are separated into (desired) intrinsic state variables
and (undesired) noise variables. In addition, the model includes
different dynamic regimes. By relying on the analysis in [19],
we present new theoretical results, and consequently, derive
new features that are specific for the model considered here.
Importantly, in the sequel, we empirically support our model,
features, and theoretical results by showing experimental results
on DBS.

3) Feature Estimators: In order to estimate the features
in (10) and (11) from the measurements at hand, we use the
following assumptions. First, we assume that the number of
measurements at each state M is large. Second, we assume that
the measured signal yi(tj) is stationary and ergodic with respect
to tj at a fixed state i.

For zi, we propose the following estimator:

ẑi =
1

M

M∑
j=1

yi(tj), (17)

where the relation between the estimator and the desired feature
is given by:

zi = ẑi +O

(
1

δtM

)
. (18)

Since M is assumed to be large, ẑi is considered as a good
approximation of zi.

The relation in (18) stems from the following derivation. Since
M is large, then by the Law of Large Numbers, the empirical
mean converges to the expected value, and so the desired feature
can be recast as:

zi = E

[
1

δt
(yi(δt+ t)− yi(t)) + yi(t)

]
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=
1

M

M∑
j=1

[
yi(tj)− yi(tj−1)

δt
+ yi(tj−1)

]

=
1

M

M∑
j=1

[
yi(tj)− yi(tj−1)

δt

]
+

1

M

M∑
j=1

yi(tj−1)

=
1

M

M∑
j=1

[
yi(tj)− yi(tj−1)

δt

]
+ ẑi. (19)

The first term in (19) is a telescopic sum; after cancellation, this
term is equal to O( 1

δtM ), leading to (18). We obtain that the
feature estimate ẑi in (17) is a good estimate of the proposed
feature (15) in the nonlinear case by (18). We note that the same
feature estimate in (17) can serve as a good estimate of the
proposed feature (10) in the direct access case as well. Therefore,
in practice, we can use the same feature estimate for both cases.

III. EXPERIMENTAL RESULTS ON DBS

In this section, we show experimental results on the unsu-
pervised detection of target regions during DBS surgery. We
focus on two particular detection tasks: finding the subthalamic
nucleus (STN) region and a sub-territory within the STN region,
called the dorsolateral oscillatory region (DLOR).

A. Data and Preprocessing

The dataset was collected at the Hadassah University Medical
Center, and it is completely anonymized without any personal
identification information. Written informed consent was ob-
tained from all patients and the study was approved by the
Institutional Review Board of Hadassah Hospital in accordance
with the Helsinki Declaration (reference code: 0168-10-HMO).

The measured signals are time series of neuronal activity
at different depths along a pre-planned trajectory recorded by
a micro-electrode. The time series at different depths are of
varying lengths, depending on the recording time at each depth
during the surgery. The data was acquired using a Neuro Omega
system. The raw data was sampled at 44 kHz by a 16-bit A/D
converter (using ±1.25V input range; i.e., ∼ 2μV amplitude
resolution). Then, the raw signal was bandpass filtered from
0.075 to 10 k Hz, using hardware of 2 and 3 pole Butterworth
filters, respectively.

In the context of the problem setting described in Section II,
we refer to each specific depth as a system state, denoted by
i, for i = 1, .., N . Accordingly, let gi(τj), j = 1 . . . , Ti be the
time series of the signal recorded at depth i, where τj is the
discrete time index and Ti is the length of the signal recorded
at depth i. We apply a pre-processing stage to the 1D time
series measurements gi(τj), where we compute the scattering
transform [35], [36]. Scattering transform is based on a cascade
of wavelet transforms and modulus operators and has been
shown to yield an informative representation of time-series mea-
surements. Let yi(tj) denote the resulting scattering transform
at time j = {1. . .,Mi} and at depth i = {1. . ., N}, where Mi

is the number of scattering transform time frames. The signal
acquired at each depth (state of the system) is classified by a

human expert into one of four classes: Before STN, STN-DLOR,
STN-Ventro Medial Non-oscillatory Region (VMNR), and After
STN.

An illustrative example of the data is depicted in Fig. 3(a),
where we plot the time series measurements from 6 different
depths (states), colored according to the experts’ labels. We
observe that signals within the STN region (colored in red and
green) have higher variability compared to signals outside the
STN region (colored in blue and cyan). Indeed, this variability
was used as a feature in previous work, e.g. in [13], [14], [15].
We also observe that there is no evident difference between the
two classes of signals within the STN region, indicating that
DLOR detection is a challenging task.

B. Detection of Sub-Territories of the Subthalamic
Nucleus

1) Subthalamic Nucleus (STN) Detection: The proposed
algorithm for the detection of the STN region appears in Al-
gorithm 2, where we denote by EDT(i) the ith coordinate of
the Estimate Distance from Target (EDT) vector designating the
specific depth along the pre-planned trajectory. Note that the
term EDT is frequently used in this context, and it is known
in advance and does not suggest any a-priori knowledge of the
target location.

Our empirical examination suggests that the STN location
can be determined by the most dominant component, i.e., the
entries of eigenvector ψ1 corresponding to the largest eigen-
value. Therefore, the detection of the STN is based only on ψ1

resulting from the application of Algorithm 1 with P = 1 to the
pre-processed data. The detection itself is implemented in steps
3-5. The main idea is to detect the first sharp transition of values
in the entries ofψ1, namely, {ψ1(1),ψ1(2), . . .}, indicating the
entry to the STN region, where the indices of the vector entries
represent the depth (state). In order to alleviate the effect of
small perturbations, we smooth the sequence of entries of ψ1

by a moving average with a window of size 3. Then, we detect
the transition by computing the difference between the medians

at two consecutive running windows of size 5 and obtain ψ̃
1
. The

index at which the maximal difference is obtained is denoted by
ien, indicating the depth of the entry point to the STN EDT(ien).
Once the entry point is determined, the exit point is set as the
first point at which ψ1(i) is smaller than ψ1(ien). We denote
the index of the exit point by iex and the corresponding depth by
EDT(iex).

The result of the application of Algorithm 2 to the example
presented in Fig. 3(a) is shown in Fig. 3(b)–(c), where we

plot ψ1(i) and ψ̃
1
(i) as a function of the depth EDT(i). It is

important to note that the eigenvectors are always determined
up to a sign. Therefore, in order to eliminate this inherent sign
ambiguity, we replace ψ1(i) by sign(δ) ·ψ1(i), where

δ = | max
i=2,...,N

(ψ̃
1
(i))− ψ̃1

(1)| − | min
i=2,...,N

(ψ̃
1
(i))− ψ̃1

(1)|.

2) Dorsolateral Oscillatory Region (DLOR) Detection:
The proposed algorithm for the detection of the DLOR appears
in Algorithm 3. Since the transitions between the sub-territories
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Fig. 3. STN border detection obtained by our proposed method - Unsupervised State Variables approximation (USVA) - applied to a single
trajectory. (a) The input data – time series of measurements of the neuronal activity along the pre-planned trajectory. We show 6 representative
raw signal traces out of the 84 signal traces at various depths along the trajectory (a single DBS track) recorded from a Parkinson’s disease
patient. The different time series are colored according to the experts’ labels: white matter before STN in blue, Dorso-Lateral Oscillatory Region
(DLOR) in red, Ventro Medial Non-oscillatory Region (VMNR) in green, and white matter after STN in light blue. (b) The 1D embedding obtained
by the USVA method. The Y-axis displays the approximate state variable value, i.e., the value of the most dominant eigenvector as a function of
the Estimated Distance from Target (EDT). The STN entry and exit locations marked by a human expert are marked by red ‘x’. (c) Same as (b)
but after pre-processing (smoothing) with a moving average window of size 3, and computing the difference between the medians of consecutive
windows of size 5. (d) 2D embedding obtained by the USVA method. The embedded points are colored according to the expert’s labels, where red
points belong to depths in the DLOR and green points belong to depths in the VMNR. The X-axis indicates the value of the second most dominant
eigenvector and the Y-axis indicates the corresponding value of the third most dominant eigenvector. (e) Same 2D embedding as in (d) but colored
according to k-means as suggested in Algorithm 3. (f) A comparison between the detection results obtained by our USVA method (marked with ‘
’),
HMM (marked with ‘+’), and the expert’s labels (marked with ‘o’). Colors are the same as in Fig. 3(a).

of the STN region are subtle and not as distinct as the transition
into and out of the STN, we perform two adjustments with
respect to Algorithm 2. First, we assume that the information
on subtle changes in the system’s state variables is manifested
deeper in the spectrum, namely in eigenvectors corresponding to
smaller eigenvalues. Therefore, we use more than one coordinate
(eignevectors) to embed the measurements. Second, we use
a small prior on the data – that the STN region is divided
into continuous regions. Accordingly, we modify the diffusion
operator as follows:

Kt = K +Ks (20)

where K is the operator defined in (9) and is used for the
detection of the STN region, and Ks is a kernel that enhances

temporal proximity, which is given by:

Ks
i,l =

W s
i,l

ws(i)
, ws(i) =

N∑
l=1

W s
i,l (21)

where

W s
i,l = exp

{
−‖EDT(i)− EDT(j)‖2

εs

}
, (22)

where εs is the kernel scale.
In accordance with the above adjustments, we apply eigen-

value decomposition toKt and represent each depth in the STN
region using two eigenvectors, ψ2 and ψ3, corresponding to
the third and fourth largest eigenvalues. We exclude ψ0 and ψ1

because ψ0 is trivial and ψ1 contains information on the STN
boundaries, which we already exploited in Algorithm 2. We note
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Algorithm 2: STN Region Detection.

Input: gi(τj) ∈ RTi , i = 1, .., N – Time series
measurements of neuronal activity at different depths.
EDT ∈ RN – Vector indicating the Estimated Distance
from Target of each depth.

Output: STN entry point and STN exit point.
1) For each time series gi(τj), compute its Scattering

Transform: yi(tj) = Φ(gi(τj)) ∈ Rk,
where j = 1, . . . ,Mi, i = 1, .., N , and Φ represents
the Scattering transform operator

2) Compute ψ1 according to Algorithm 1

3) Compute ψ̃
1

by applying a moving average with a
window of size 3 samples to ψ1, and then, compute
the difference between the medians at two consecutive
running windows of size 5 samples

4) ien = argmax
i

ψ̃
1
(i)

5) iex = argmin
i

{i : ψ1(i) ≤ ψ1(ien) and i > ien}
6) Set the STN entry point as EDT(ien), and the STN exit

point as EDT(iex)

that we examined the use of different numbers of eigenvectors,
and we choose to represent each depth using two eigenvectors
since it led to the best empirical results. Yet, our empirical test
suggests that the results are not sensitive to using a different
number of eigenvectors.

This representation enables us to find separation in the embed-
ded space. Specifically, we apply K-means [37] to the following
embedding of each depth within the STN region:

R(i) = (ψ2(i),ψ3(i),EDT(i)). (23)

We note that since the DLOR is a continuous region we added
the third coordinate that encourages temporal continuity of the
separation. This third coordinate is appropriately scaled so that it
fits the dynamical range of the other two coordinates. We apply
K-means with k = 2, initialized with the entry depth and exit
depth of the STN region, and obtain two clusters within the STN.
The cluster that includes the entry depth to the STN region is
denoted as the DLOR, and the other cluster, which includes the
exit depth from the STN region, is denoted as the STN-VMNR.
An example of the 2D embedding of measurements from depths
within the STN region is shown in Fig. 3(d)–(e). In Fig. 3(d), the
points are colored according to the labels obtained by a human
expert, where red points belong to depths within the DLOR and
green points belong to depths labeled as STN-VMNR. The cor-
responding K-means labels are displayed in Fig. 3(e). Indeed, we
see that our unsupervised detection coincides with the expert’s
labels. We note that although the embedding in Fig. 3(d) may
suggest that the classification of the DLOR/STN-VMNR could
be based on the sign ofψ2, inspecting other trajectories indicates
that it does not apply in general and that the clustering should
be based on a combination of ψ2 and ψ3.

Finally, based on Algorithms 2 and 3, we cluster the data
according to the 4 labels. A visual comparison between the labels

Algorithm 3: DLOR Detection.

Input: The affinity matrix K ∈ RN×N , the STN entry point,
the STN exit point
EDT ∈ RN – the vector indicating the Estimated Distance
from Target of each depth.

Output: The DLOR exit point.
1) Compute a smoothing kernel Ks according to (21)
2) Compute the kernel Kt according to (20)
3) Apply eigenvalue decomposition to Kt and obtain its

eigenvalues and eigenvectors
4) Represent each depth in the STN region according to

(23), i.e., by R(i) = (ψ2(i),ψ3(i),EDT(i))
5) Divide all depth representations R(i) into 2 clusters,

DLOR and STN-VMNR, using K-means initialized
with the STN entry (ien) and exit (iex) points

6) Set id = argmin
i

{R(i) ∈ STN -VMNR}
7) Set the DLOR exit point as EDT(id)

obtained by our unsupervised method and by the supervised
HMM algorithm with respect to labels given by an expert to
data from a specific example is presented in Fig. 3(f). For
convenience, our method is denoted by USVA (Unsupervised
State Variables Approximation). We see that in the presented
example, our unsupervised method is able to detect the STN
region with an accuracy that is comparable to the accuracy of
the supervised HMM method. In addition, our unsupervised
method obtains a superior detection of the DLOR compared to
the supervised HMM. We note that these results are with respect
to the expert’s labels.

C. Quantitative Detection Results

We apply our method (Algorithm 2 and Algorithm 3) to 25
different trajectories recorded from 16 patients, and we com-
pare the results to the results obtained by the HMM algorithm
proposed in [13], which is considered the gold-standard. Each
trajectory consists of three transition points of interest: the STN
entry, the DLOR exit, and the STN exit (note that the DLOR
entry is the same as the STN entry). In order to quantitatively
evaluate the detection, we measure the distance between the
transition point marked by the human expert and the detected
transition point. For the purpose of normalization, we divide
the distance by the size of the respective region. Consequently,
we have a total of six performance measures: STN entry and
exit errors (divided by the size of the STN region), DLOR entry
and exit errors (divided by the size of the DLOR region), and
the overall STN and DLOR errors. Note that the STN entry
error and the DLOR entry error differ only by the normalization
factor, since the STN entry point coincides with the DLOR entry
point. The median and interquartile range (IQR) of the five
performance measures are reported in Fig. 4. To complement
the experimental study, we also report their mean and standard
deviation in percentage in Table I and Table II. We remark that
in our performance evaluation, failures to detect the DLOR exit
point is considered to be a 100% error. In addition, we note that
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Fig. 4. Comparison between our method and the HMM algorithm. The comparison is based on the experts’ labels of 25 different trajectories of
16 different patients. The blue thick bars indicate the median error percentage of each task and the black thin bars indicate the interquartile range
(IQR). (a) The median error in detecting the entry point to the STN region. (b) The median error in detecting the exit from the STN region. (c) The
median overall error in detecting the STN region. (d) The median error in detecting the exit from the DLOR. (e) The median overall error in detecting
the DLOR.

TABLE I
THE STN BORDERS DETECTION RESULTS OBTAINED BY OUR

METHOD(USVA) AND THE HMM ALGORITHM. THE PRESENTED VALUES ARE
THE AVERAGE BORDER DETECTION ERROR (OVER THE 25 TESTED

TRAJECTORIES) AND THE STANDARD DEVIATION WITH RESPECT TO THE
IDENTIFICATION OF A HUMAN EXPERT. THE ERROR IS REPORTED IN

PERCENTAGE RELATIVE TO THE STN SIZE

TABLE II
SAME AS IN TABLE I, BUT FOR THE DLOR DETECTION. THE ERROR IS

REPORTED IN PERCENTAGE RELATIVE TO THE DLOR SIZE

the DLOR performance measure values are higher than the STN
performance measures; this is due to the normalization by the
size of the DLOR region, which is smaller than the STN region.

We observe that our method attains results comparable to
the gold-standard in the detection of the STN and outperforms
it in the detection of the DLOR. Importantly, our method is
unsupervised whereas the HMM-based method is supervised,
and therefore, could be biased towards the labeling of the specific
expert labels, which were used for training.

D. Run Time

The run-time of our algorithm is mainly governed by the pre-
processing stage of each MER (scattering transform). Therefore,
it highly depends on the number of MERs taken from different
trajectory depths and the recording time of each MER. After

acquiring the MERs from the entire trajectory, the total run-
time of our method is approximately 3-5 minutes on a standard
personal computer. This run-time could be significantly reduced
to a few seconds if we apply the pre-processing stage during the
recording of each MER.

IV. CONCLUSION

We presented a method that can enable physicians with accu-
rate detection of the STN and the DLOR during DBS surgery.
The MERs collected during surgery can be fed into a system that
implements Algorithms 2 and 3. This system, which does not
need to be manually tuned, provides recommendations regarding
the STN and the DLOR locations. By the nature of our method,
these recommendations are not biased toward specific experts,
and therefore, can help physicians validate their decisions. We
note that our method recommends a location of the target regions
only after all the MERs have been acquired.

Future work will address the detection of the Globus Pallidus
(GP), which is an area of interest during a DBS surgery for
treating advanced Parkinson’s disease and dystonia [38]. Since
the setup of the GP detection is very similar to the STN and
DLOR detections, our unsupervised method can be applied with
only mild adjustments. Another research direction concerns the
estimation of the covariance of the features. Currently, we use
the sample covariance, however, finding better estimators of the
covariance matrix, for example using shrinkage [39], [40], may
significantly improve the results. The generalization of the pro-
posed method to multiple sets of measurements from different
modalities could also be considered. In the context of manifold
learning, multimodal data fusion has attracted much attention
recently, e.g., [41], [42]. The proposed variant of the Maha-
lanobis distance could be incorporated into such multimodal
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methods, facilitating unsupervised target and anomaly detection
for multi-channel and multi-modal data. Finally, we remark that
our algorithm generates an embedding of measurements from
which the STN and the DLOR locations are identified. However,
this embedding does not have an inverse map. In the context of
DBS, if such a map existed, it could be used to extract the signal
properties characterizing the different regions and the transitions
between them. Future work will explore the latent governing
variables of the MERs that determine the locations of the STN
and the DLOR.
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