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Motivated by establishing theoretical foundations for various manifold learning algorithms, we study
the problem of Mahalanobis distance (MD) and the associated precision matrix estimation from high-
dimensional noisy data. By relying on recent transformative results in covariance matrix estimation, we
demonstrate the sensitivity of MD and the associated precision matrix to measurement noise, determining
the exact asymptotic signal-to-noise ratio at which MD fails, and quantifying its performance otherwise.
In addition, for an appropriate loss function, we propose an asymptotically optimal shrinker, which is
shown to be beneficial over the classical implementation of the MD, both analytically and in simulations.
The result is extended to the manifold setup, where the nonlinear interaction between curvature and high-
dimensional noise is taken care of. The developed solution is applied to study a multi-scale reduction
problem in the dynamical system analysis.
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1. Introduction

High-dimensional datasets encountered in modern science often exhibit nonlinear low-dimensional
structures. One prominent approach to deal with such point clouds is to model their nonlinear structures
by manifolds. In the last two decades, this direction has led to the emergence of a multitude of
manifold learning methods, including the classical ISOMAP [42], locally linear embedding (LLE) [29],
Hessian LLE [7], eigenmap [4] and diffusion maps [5], as well as the more recent vector diffusion
maps [32], multiview diffusion maps [21] and alternating diffusion maps [18, 39], to name but a few.
Typically in manifold learning, point clouds in R

p are assumed to be sampled from a d-dimensional
smooth manifold M embedded in R

p, usually with some additional contaminating noise. In this setting,
the manifold represents the ‘essence’ or the ‘signal’ of the data. Consequently, the goal in manifold
learning is to recover the geometric or topological structure of the manifold from the data points and,
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in turn, to use the recovered structure to embed the high-dimensional data in a low-dimension space,
facilitating a compact and informative representation of the data. This approach has been successfully
applied to applications from a broad range of fields, e.g. dynamical systems modeling [41, 48], sleep
stage assessment [22, 46], cryo electro microscope [30], image denoising [34], single channel blind
source separation such as fetal electrocardiogram analysis [36] and stimulation artifact removal for the
intracranial electroencephalogram [1], and long-term physiological signal visualization and analysis [20,
43].

Classical manifold learning methods heavily rely on meaningful measures of pairwise discrepancy
between data points. In this so-called metric design problem, the data analyst aims to find a useful
metric representing the relationship between data points embedded in a high-dimensional space. In this
paper, we study the Mahalanobis Distance (MD)—a popular, and arguably the first method for metric
design [23, 26]. MD was originally proposed in 1936 with the classical low-dimensional setting in mind,
namely, for the case where the ambient dimension p is much larger than the dataset size n. Interestingly,
due to its useful statistical and invariance properties, MD became the basis of several geometric data
analysis techniques [44, 47, 49], aimed specifically at the high-dimensional regime p � n.

In a recent line of work [31, 37], a variant of MD was proposed and used to reveal hidden intrinsic
manifolds underlying high-dimensional, possibly multi-modal, observations. The main purpose of MD
in this hidden manifold setup is handling possible deformations caused by the observation or sampling
process. Broadly, this is carried out by estimating a quadratic form of the Jacobian of the (unknown)
observation function, which is equivalent to estimating the precision matrix locally on the manifold.
It was recently shown that MD is also implicitly used in the seminal LLE algorithm [29], when the
barycenter step is properly expressed [24].

As the number of dimensions p in typical data analysis applications continues to grow, it becomes
increasingly crucial to understand the behaviour of MD, as well as other metric design algorithms, in
the high-dimensional regime p � n. At first glance, it might seem that this regime poses little more
than a computational inconvenience for metric design using MD. Indeed, it is easy to show that in
the absence of measurement noise, MD cares little about the increase in the ambient dimension p.
This paper however calls attention to the following key observation. In the high-dimensional regime
n � p, in the presence of ambient measurement noise, a new phenomenon emerges, which introduces
various nontrivial effects on the performance of MD. Depending on the noise level, in the high-
dimensional regime, MD may be adversarially affected or even fail completely. Clearly, the assumption
of measurement noise cannot be realistically excluded, and yet, to the best of our knowledge, this
phenomenon has not been previously fully studied. A first step in this direction was taken in [6], with
the calculation of the distribution of MD under specific assumptions.

Let us describe this key phenomenon informally at first. The computation of MD involves the estima-
tion of the inverse covariance matrix, or precision matrix, corresponding to the data at hand. Classically,
the estimation relies on the sample covariance, which is inverted using the Moore–Penrose pseudo-
inverse. It is well-known that, in the high-dimensional setup or in the regime n � p, the sample covari-
ance matrix is a poor estimator of the underlying covariance matrix. Indeed, advances in random matrix
theory from the last decade imply that the eigenvalues and eigenvectors of the sample covariance matrix
are both biased, namely, do not converge to the corresponding eigenvalues and eigenvectors of the under-
lying population covariance matrix [14, 28]. Such biases in small eigenvalues, which lead to inaccurate
covariance matrix estimation, become immense when applying the Moore–Penrose pseudo-inverse.

This challenge in the high-dimensional setup is amplified when we have a nonlinear manifold
structure. Inverting small (inconsistent) eigenvalues is challenging when evaluating the precision matrix,
and this issue becomes more challenging in the context of manifold learning, where the estimation
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OPTIMAL RECOVERY OF PRECISION MATRIX 1175

of MD is performed locally [31, 37]. Ideally, under the manifold assumption, in infinitely small
neighborhoods and for a sufficiently large number of samples without noise, the rank of the local
sample covariance equals the dimension of the manifold, which is typically smaller than the dimension
of the ambient space, making the sample covariance low-rank with distinct strictly zero eigenvalues.
However, in practice, due to the finite sample set, the considered neighborhoods cannot be sufficiently
small. In such cases, depending on the manifold curvature, samples from the manifold depart from the
tangent space to the manifold, and the rank of their sample covariance matrix undesirably grow, where
the eigenvalues related to curvature are much smaller compared with those related to the tangent space.
When noise exists, the situation is further complicated by the interaction between those curvature-related
small eigenvalues and the relatively few points compared with the ambient space dimension.

In this paper, we study this problem and propose a remedy. By relying on formal existing results
in covariance matrix estimation, we measure the sensitivity of MD to measurement noise. Under the
assumption that, locally, the data on the manifold lie on a low-dimensional linear subspace embedded
in the ambient space Rp and that the measurement noise is Gaussian white, we are able to determine the
exact asymptotic signal-to-noise ratio at which MD fails, and quantify its performance otherwise. Then,
we propose a better MD estimator based on the idea of shrinkage of the associated precision matrix.
It has been known since the 1970’s [35] that by shrinking the sample covariance eigenvalues one can
significantly mitigate the noise effects and improve the covariance estimation in high-dimensions. We
formulate the classical MD as a particular choice of shrinkage estimator for the eigenvalues of the
sample covariance. Building on recent results in high-dimensional covariance estimation, including the
general theory in [8] and a special case with application in random tomography [32, Section 4.4), we
find an asymptotically optimal shrinker for the precision matrix estimation, which is better than the
classical implementation of the MD, whenever MD is computed from noisy high-dimensional data. We
show that under a suitable choice of a loss function for the estimation of MD, our shrinker is the unique
asymptotically optimal shrinker; the improvement in asymptotic loss it offers over the classical MD is
calculated exactly. We then extend the above established results to handle the challenge of designing a
better metric when applying diffusion map. This extension is nontrivial due to the nontrivial interaction
of curvature and noise and the finite sampling size. Finally, we apply diffusion maps with the proposed
estimate of MDto separate slow and fast dynamics when the observation is contaminated by high-
dimensional noise.

While the present paper focuses on MD, we posit that the same phenomenon holds much more
broadly and in fact affects several widely used manifold learning, particular in metric learning
algorithms. In this regard, the present paper seeks to highlight the fact that manifold learning and metric
learning algorithms will not perform as predicted by the noiseless theory in high dimensions and may
fail completely beyond a certain noise level.

2. Problem setup

2.1 Manifold model

When a point cloud X := {xi}n
i=1 ⊂ R

p has a nontrivial nonlinear structure, or even nontrivial
topological structure, a common approach is to model this structure by a manifold. This is known
as the so-called manifold assumption. Such manifold assumption holds for various practical data.
Examples include cryo-electro microscopy [30], phase spaces of dynamical systems [41, 48] and various
biomedical signals [1, 20, 36, 43]. The main feature of this manifold assumption is that the points are
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distributed on a nonlinear set so that they are nonlinearly related, which generalizes the commonly used
linear model.

To model X by the manifold model, consider a p-dimensional random vector X : Ω → R
p, which

is a measurable function with respect to the probability space (Ω , F,P), where P is the probability
measure defined on the sigma algebra F in the event space Ω . We assume that the range of X is
supported on a d-dimensional compact, smooth Riemannian manifold (M, g) isometrically embedded
in R

p via ι : M ↪→ R
p. In this work, we assume that M is boundary-free to simplify the exposition.

We shall mention that the commonly considered linear model is a special manifold model, where the
manifold is an affine linear subspace space of Rp.

On the manifold, the associated statistical setup is as follows. Let B̃ be the Borel sigma algebra of
ι(M), and let P̃X denote the probability measure induced from X. Clearly, P̃X is defined on B̃. Denote
dV to be the Riemannian volume density of M associated with the metric g. For simplicity, we assume
that P̃X is absolutely continuous with respect to the induced Riemannian measure on ι(M), denoted by
ι∗dV . By the Radon–Nikodym theorem, for any z ∈ ι(M) ⊂ R

p, there exists a non-negative measurable
function P(z) defined on ι(M) such that dP̃X(z) = P(z)ι∗dV(z). The probability density function (pdf)
of X on M is defined to be P(z). We further assume that P(z) is bounded away from 0 and smooth. When
P(z) is constant, we call X a uniform random sampling scheme; otherwise, it is nonuniform. Now, we
introduce the key quantity of interest in this paper, the local covariance matrix.

Definition 2.1. Fix x ∈ M. For an open simply connected neighborhood of x, O(x) ⊂ R
p, define

ΣO(x) := E[(X − μO(x))(X − μO(x))
�χO(x)(X)] ∈ R

p×p (2.1)

as the local covariance matrix associated with O(x) centered at μO(x), where

μO(x) := E[XχO(x)(X)] = 1

|O(x) ∩ ι(M)|
∫
O(x)∩ι(M)

zP(z)dz ,

|O(x) ∩ ι(M)| is the volume of O(x) ∩ ι(M) and χO(x) is the indicator function of the set O(x).

One main goal of considering this local covariance is capturing those directions with maximal
variation of the dataset. From the knowledge of principal component analysis, those directions are the
eigenvectors of the local covariance matrix with the largest eigenvalues. We have some remarks. First,
by Nash’s isometric embedding theorem, ΣO(x) is of rank D, where D ≤ d(3d + 11)/2 for any O(x).
Second, in existing literature, there is another different definition of the local covariance matrix, in which
the mean μO(x) is replaced with ι(x). In general, the two definitions are different, even when the set is
perfectly symmetric, e.g. O(x) is a ball and P(x) is uniform. Indeed, since the range of X is supported
on ι(M), when ι(M) is not flat, ι(x) might deviate from the center of O(x) due to the curvature of the
manifold; that is, 1

|O(x)∩ι(M)|
∫
O(x)∩ιM(z − ι(x))dz 
= 0. While this seems to be a problem, it was shown

in [24] that the difference between the center of O(x) and ι(x) is negligible (expressed as a higher order
term in the error) when the diameter of O(x) is sufficiently small. Broadly, since locally the manifold
can be well approximated by an affine subspace, when the diameter of O(x) is sufficiently small, the
data located in O(x) can be well approximated by the tangent space to the manifold at x, i.e. TxM. This
point will be further addressed in Section 2.2.

The above derivation leads to the following local statistical model, which enables to further study the
local structure of a manifold. For x ∈ M and an open, simply connected neighborhood of x, O(x) ⊂ R

p,
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OPTIMAL RECOVERY OF PRECISION MATRIX 1177

we define a new random vector

Xx := XχO(x)(X), (2.2)

with mean μx := μO(x) and covariance matrix Σx := ΣO(x). By definition, Xx is a bounded random
vector, and hence, all its moments are finite. Also, as has been widely discussed in the literature (see [24]
and reference therein), the first d dominant eigenvectors of Σx form an accurate estimate of the tangent
space to the manifold at x. Specifically, if Σxul = λlul, for l = 1, . . . , p, where λ1 ≥ λ2 . . . ≥ λp, then
the span of {u1, . . . , ud} approximates ι∗TxM.

Often in applications, the manifold is not directly accessible due to additional noise, and we can
only sample

Y = X + σξ , (2.3)

where ξ ∼ N(0, Ip). As a consequence, for x ∈ M, in the presence of noise, the corresponding local
random vector can be recast as

Yx := YχO(x)(X), (2.4)

with mean μx := μO(x) and covariance matrix Σx +σ 2Ip. Although Yx is not a bounded random vector,
all its moments are finite.

We remark that the local set O(x) can be defined in several plausible ways, depending on the problem
at hand. A common choice is the ball Bx(ε) with the center at ι(x) and the radius ε > 0. In other
applications, O(x) might be an ellipsoid [24, 31, 37] or a more general setup, depending on the metric
of interest. We will revisit to this issue in the sequel.

2.2 Linear spiked model

In manifold learning, local kernels are commonly used, e.g. kernels based on radial basis functions. The
use of kernels implies that only points around the center of the kernel x ∈ M contribute to the algorithm
outcome. Therefore, considering those points located inside the neighborhood of x, O(x), is sufficient
for analyzing a manifold learning algorithm with a local kernel. Since the bandwidth of the kernel is
typically small, the diameter of the local set O(x) is small as well. Consequently, by the definition of
a manifold, data in O(x) can be well approximated by the tangent space to the manifold at x, which
is a low-dimensional affine subspace. Note that in the special case that the manifold is a linear affine
subspace, all points are located by a low-dimensional space.

Since locally the manifold can be viewed merely as a linear subspace, the local statistical model
described in Section 2.1 can be well approximated by the classical linear spiked model (or spiked
covariance model [14]), which is detailed next with slight modifications in the notation. We note that
in this section, deviations of the samples from a linear space due to the manifold curvature will not be
treated, and their affect will be considered together with the affect of the ambient noise. However, we
will extend and test the ability of the proposed estimator to handle such phenomena in the simulation
study in Section 6.

We now consider the spike model. In plain English, a spike model is a manifold model when the
manifold is an affine subspace, where the dimension of the affine subspace is fixed. Consider a point
cloud in R

p supported on a d-dimensional linear subspace, where d ≤ p. For simplicity, we assume that
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the point cloud is sampled independently and identically (i.i.d.) from

X ∼ N
(
μ, ΣX

) ∈ R
p , (2.5)

where μ denotes the mean and ΣX denotes the population covariance matrix, whose rank is equal to
d. Note that we could consider a random vector with mean 0 and a finite fourth moment [8]; since
this could only increase the notational burden without providing additional insights, we focus on this
simplified model.

It is often convenient to note that a point cloud sampled from X can be understood as sampling i.i.d.
from a p-dim random vector

X = μ +
d∑

l=1

√
λlζlul, (2.6)

where λl > 0, ζl ∼ N(0, 1), Eζlζk = δl,k, ΣXul = λlul and ‖ul‖L2 = 1 for l = 1, . . . , d. Thus, the
d-dimensional linear affine subspace is the space spanned by u1, . . . , ud, which could be understood as
spikes and hence the nomination of the model, and shifted by μ. We note that this global linear model is
related to the local structure of a manifold in (2.2) in the following way: μ here is the center point x on
the manifold in (2.2), and the d-dimensional linear affine subspace spanned by u1, . . . , ud is the tangent
space at x, while we need extra components to capture the curvature of the manifold.

Similarly to the manifold model, suppose that the samples of X, which we refer to as the signal, are
not directly observable. Instead, the observed data consist of samples from the random variable

Y = X + σξ , (2.7)

where 0 ≤ σ < ∞ and ξ ∼ N(0, Ip) is a Gaussian measurement noise independent of X, which we
assume for simplicity to be white.

3. Precision matrix and MD estimation

The focal point of this paper is the estimation of the MD under the manifold model from a statistical
standpoint, which, as described in Section 2, leads to the classical linear spiked model. The estimation
of the MD involves the estimation of the local precision matrix. Therefore, we start this section with
details on the estimation of the precision matrix in Section 3.1, followed by a detailed description of the
estimation of the MD in Section 3.2.

3.1 Precision matrix estimation and its challenge

In Sections 2.1 and 2.2, we showed that the local and global statistical models are seemingly very
similar. Indeed, at first glance, both models consist of a hidden ‘signal’ component ((2.2) and (2.5)) and
noisy accessible observations ((2.4) and (2.7)). Furthermore, under both models, the local and global
population covariance matrices of the ‘signal’ component (Σx and ΣX) are approximately low rank and
precisely low rank, respectively.

However, one of the main claims of this work is that although the two models seem equivalent,
subtle differences between them, particularly in the context of precision matrix estimation, become
fundamental.
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OPTIMAL RECOVERY OF PRECISION MATRIX 1179

Let us consider first the estimation of the precision matrix in the simpler, classical linear spiked
model described in (2.5) and (2.7). Without noise, the computation of the precision matrix of X could
be simply implemented using the Moore–Penrose pseudo-inverse. Suppose the eigendecomposition of
ΣX is given by ΣX = Udiag(λ1, . . . , λd, 0, . . . , 0)U�, where λ1 ≥ λ2 ≥ . . . and U ∈ O(p). Then, the
pseudo-inverse is given by Σ

†
X = Udiag(1/λ1, . . . , 1/λd, 0, . . . , 0)U�, namely, inverting the non-zero

eigenvalues. The introduction of additive noise poses a significant challenge for such an estimation,
since the small eigenvalues could be mixed with the noise. While the contribution of such small
eigenvalues is limited in the composition of the covariance matrix, in the composition of the precision
matrix their affect becomes significant.

In addition to this classical challenge, the estimation of the precision matrix under the manifold
model poses another layer of complexity. To simplify the discussion, we assume that O(x) is a simply
connected ball, that is O(x) = BR

p

ε (μx), where BR
p

ε (μx) is a Euclidean ball in R
p of radius ε > 0

centered at μx with a sufficiently small ε. In this case, the geometric picture of the local covariance
matrix is well captured by [45, Proposition 3.1], which is summarized as follows. Fix x ∈ M. Assume
that the manifold is translated and rotated properly, so that x = 0 and the tangent space in R

p, ι∗TxM, is
spanned by {e1, . . . , ed}, where ej is a unit p-dim vector with 1 in the jth entry. We have the following
asymptotical expansion of (2.2) when ε > 0 is sufficiently small:

ΣBRp
ε (μx)

= |Sd−1|P(x)

d(d + 2)
εd+2

( [Id×d 0
0 0

]
+ O(ε2)

)
, (3.1)

where Sd−1 is a (d − 1)-sphere, |Sd−1| is the volume of Sd−1 and the implied constant in O(ε2) depends
on the second fundamental form at x. From a statistical perspective, this expansion well captures
the intuition that the variability of the data located in BR

p

ε (μx) is restricted to only few directions
aligned with TxM. Indeed, by applying the perturbation theory to (3.1), the d eigenvectors of ΣBRp

ε (μx)

corresponding to the largest d eigenvalues provide an approximate basis for the embedded tangent plane
ι∗TxM. The expression of the covariance matrix in (3.1) implies that there is a significant spectral gap
between the top d eigenvalues and the remaining ones, which depend on the curvature of the manifold.
Furthermore, these remaining eigenvalues could be very small with order higher than εd+4. In other
words, under the manifold setting, in contrast to the linear spiked model, even in the noiseless case,
the covariance is not strictly low rank with only d nonzero eigenvalues. Such small eigenvalues due to
the curvature of the manifold, if not properly taken care before taking inverse to estimate the precision
matrix, the obtained precision matrix might be deformed. Such small eigenvalues can be added to the
noise components and together they obscure the spectral gap. Thus, it is necessary for determining the
‘effective rank’ of the matrix, which is essential for the calculation of the precision matrix. For more
details, we refer the readers to the detailed discussion in [24, 45].

In addition to the above challenge due to the curvature, the presence of noise particularly in the
manifold setting imposes another challenge—that is, how to find the true neighbors? Specifically, note
that the neighboring points of x denoted by χO(x) need to be identified from the noisy samples. When
σ = 0, i.e. in the noiseless case, a neighbor can be easily identified if the diameter of O(x) is sufficiently
small. However, when σ > 0, i.e. in the presence of noise, it is not clear if a neighbor determined from
the noisy point cloud is truly a neighbor. Concretely, let X = {xi}n

i=1 ⊂ ι(M) ⊂ R
p denote a set of

identical and independent (i.i.d.) random samples from X, and Y = {yi}, where yi = xi + σξi is sampled
from Y . Then, in general, ‖yi − yj‖Rp ≤ ε does not imply ‖xi − xj‖Rp ≤ ε. Thus, a naive approach to
determine neighbors might fail. To the best of our knowledge, there are only few existing algorithms
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1180 M. GAVISH ET AL.

for determining neighbors when the point cloud is noisy. For example, determining a neighbor by the
diffusion distance [5], which has a solid theoretical support when noise exists [12, 13]. Since finding
neighbors is still a challenging problem on its own, in this paper, we focus only on estimating the
precision matrix, and subsequently, the MD, assuming that the true neighbors are known.

3.2 Mahalanobis distance

We are now ready to define the MD: we start with the definition of the MD under the manifold model,
and then for reference, we present the typical definition under the global linear spiked model.

Under the manifold model, since the covariance matrix may have no strictly zero eigenvalues even
in the noiseless case due to the curvature, we consider the following definition of the MD.

Definition 3.1 MD under the manifold model. Suppose x ∈ M. The MD between z ∈ ι(M) and Xx is
defined by

d2
Σx

(z, Xx) := (z − μx)
�Id(Σx)(z − μx), (3.2)

where Id(Σx) is the truncated pseudo-inverse of degree d defined by

Id(Σx) := Udiag(1/λ1, . . . , 1/λd, 0, . . . , 0)U�,

Σx = Udiag(λ1, . . . , λp)U
� is the eigendecomposition of Σx, and λ1 ≥ λ2 ≥ . . ..

Note that the knowledge of the manifold dimension d is required for this definition; yet, it is in
general not available and needs to be estimated.

For comparison, consider also the classical definition of the MD under the global linear spiked
model.

Definition 3.2 MD under the linear spiked model. The MD between an arbitrary point z ∈ R
p and the

underlying signal distribution X (2.5) is defined by

d2
ΣX

(z, X) = (z − μ)�Σ
†
X(z − μ), (3.3)

where † denotes the Moore–Penrose pseudo-inverse.

Let us take a closer look at the latter definition. Since ΣX is semi-positive definite, by the Cholesky
decomposition, we have Σ

†
X = WW�, where W ∈ R

p×d. Hence,

d2
ΣX

(z, X) = (z − μ)�(WW�)(z − μ) = ‖W�(z − μ)‖2
Rp ,

which indicates that geometrically, MD evaluates the relationship between z and (the mean of) X by a
proper linear transform. In Section 3.3, we relate W� to the inverse of the Jacobian of arbitrary unknown
observation functions and show that it gives rise to an important invariance property of the MD in the
context of manifold learning. Here, we only demonstrate a primary merit of MD, which stems from
its invariance to rotation and rescaling. Importantly, this invariance property holds for both definitions:
under the linear spiked model as well as under the manifold model. Consider the linear spiked model
and a random variable X̃ = cAX, where c ∈ R models rescaling and A ∈ O(p) models rotation. Here,
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OPTIMAL RECOVERY OF PRECISION MATRIX 1181

O(p) denotes the group of p-by-p orthogonal matrices. The population covariance matrix of X̃ is

ΣX̃ = c2AΣXA� (3.4)

and its population mean is rotated and rescaled to μ̃ = cAμ. To demonstrating the invariance, suppose
z̃ = cAz and observe the MD between z̃ and X̃

d2
ΣX̃

(z̃, X̃) = (cA(z − μ))�Σ
†
X̃
(cA(z − μ)) = (z − μ)�Σ

†
X(z − μ) = d2

ΣX
(z, X).

The same argument holds for the MD under the manifold model; for brevity, we omit the details.
Now, recall that the goal in this work is to estimate the MD between a point z ∈ R

p and X, when

we only have access to noisy data sampled from Y in (2.7). Concretely, assume that y1, . . . , yn
iid∼ Y is a

sample of n data points. Since ΣX is unknown, the quantity dΣX
(z, X), or Σ

†
X in (3.3), must be estimated

from the (noisy) data. For simplicity, we assume below that μ and σ are known; these assumptions
can easily be removed in applications to real data. As discussed in Section 3.1, the notable challenge
in estimating the MD from local samples of Y is the estimation of the precision matrix via the pseudo-
inverse, stemming from the interaction of the small eigenvalues of ΣX and the noise. In addition, as
discussed in Section 3.1, the main difference between (2.5) and (2.2) is that in (2.5), the covariance
matrix ΣX is global and strictly of low rank, whereas in (2.2), the covariance matrix Σx depends on x, and
its rank is in general higher than d when the manifold is of dimension d, yet only its first d eigenvalues
are dominant. In the context of MD, this rank difference might lead to unwanted consequences if we
consider Definition 3.2. Below, we demonstrate it with an example.

Assume for simplicity that the pdf is uniform, O(x) = BR
p

ε (ι(x)) and ε is sufficiently small. From
(3.1), we observe a clear spectral gap between the first d eigenvalues and the remaining ones. Therefore,
we would expect that the behavior of Xx in (2.2) is similar to that of X in (2.5). However, we need to be
careful with the associated precision matrices, and hence, with the two definitions of MD. Suppose that
the main interest in estimating the MD is recovering the geodesic distance when the manifold cannot
be directly accessed. It has been shown in [24, Theorem 8 (3)] that even if the manifold can be directly
accessed, defining the MD between a point z ∈ ι(M) and Xx by d̃2

Σx
(z, Xx) = (z − x)�Σ†

x (z − x) as in
(3.3) might lead to a biased estimate of the geodesic distance. To be more precise, when the rank of Σx
is greater than d and ‖x − z‖

Rp = t is sufficiently small, asymptotically we have

d(d + 2)

|Sd−1|εd+2 d̃
Σ

†
x
(z, Xx) = t + O(t) , (3.5)

which means that the MD cannot even recover the basic geodesic distance since the order of the error
is of the same order as the geodesic distance. Broadly, this bias is the result of the interaction of the
small eigenvalues related to the curvature, particularly the second fundamental form, and the fact that
the vector z−x is not intrinsic to the manifold and might contain component that is normal to the tangent
space at x.

3.3 Motivating example

A motivating example for the centrality of the MD under the manifold model in data analysis was
presented in [31] and later elaborated in the empirical intrinsic geometry (EIG) framework presented in
[37, 38] with various applications, e.g., [9–11, 17, 22, 40, 46].
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Suppose the manifold M is merely an image of a different, intrinsic, and inaccessible manifold of
interest N, that is M = φ(N), where φ is a diffeomorphic map. We may call N the latent space. In
applications, φ could represent the distortion of the data introduced by some measurement equipment.
This ‘distortion model’ is often of key important since it critically affects the intrinsic information N we
have interest in, even if noise does not exist. Under this model, it is shown in [31, Section 3] that when
M and N are both Euclidean spaces, for x, x̄ ∈ M, the following holds:

‖θ − θ̄‖2
2 = 1

2
(x − x̄)�

[
C† + C̄†](x − x̄) + O(‖x − x̄‖4

2) , (3.6)

where θ = φ−1(x), θ̄ = φ−1(x̄) and C = ∇φ|θ∇φ|�θ , C̄ = ∇φ|θ̄∇φ|�̄
θ

. A similar statement for the case
when M and N are both manifolds and φ is a diffeomorphism is given in [24]. It was further shown in
[31] and [24] that if we have i.i.d. sampled from M adhering to the statistical manifold models discussed
above, then

Σx = ∇φ|θ∇φ|�θ (3.7)

for a sufficiently small neighborhood O(x). Remarkably, by combining (3.6) and (3.7), a small variant
of the MD can recover the distance between θ and θ̄ from the hidden intrinsic manifold Mθ based on
samples from M without explicit information on the map φ, thereby solving a completely blind inverse
problem.

The above distortion model was studied in [37] in the context of a nonlinear dynamical system.
Denote the dataset or the point cloud as U := {uj}n

j=1 ⊂ R
q, where uj is sampled at the jth time stamp.

The key assumption is that U comes from observing an inaccessible intrinsic dynamics θ(t) ∈ R
p that

satisfies the stochastic differential equation (SDE)

dθ(t) = a(θ(t))dt + dω(t) , (3.8)

where a is an unknown drift function and ω is the standard d-dimensional Brownian motion. We call the
subset of Rp that hosts θ(t) the phase space; for example, an open subset of Rp, or a smooth manifold
embedded in R

p.
The observation is modeled by a diffeomorphic function Φ : Rp → R

q so that uj = Φ(θj), where θj
is sampled from the intrinsic dynamics θ(t) at the j-th time stamp. We call Φ the observation transform.
Based on (3.8), and the fact that

dut =
(

1

2
ΔΦ|θt

+ ∇Φ|θt
a(θt)

)
dt + ∇Φ|θt

dωt (3.9)

by the Ito’s formula, we obtain that

Cov
(
dut

) = ∇Φ|θt
∇Φ|�θt

, (3.10)

since ( 1
2ΔΦ|θt

+ ∇Φ|θt
a(θt))dt is the drift. By combining the above facts, it is shown in [31, Section

3] that when ui and uj are sufficiently close and the phase space is flat, we could recover the intrinsic
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distance between θi and θj by

‖θi − θj‖2
Rd = 1

2
(ui − uj)

�[C†
i + C†

j

]
(ui − uj) + O(‖ui − uj‖4) , (3.11)

where Ci = ∇Φ(θi)[∇Φ(θi)]
� is the covariance matrix associated with the observation process (i.e.

the deformed Brownian motion). Furthermore, it is shown in [31, 37] that Ci can be estimated by the
covariance matrix of {uk}i+L

k=i−L, where L ∈ N is chosen by the user. The key relevant fact here is that
since the covariance matrix of dut is ∇Φ|θt

∇Φ|�θt
, the related open set O(ut) is an ellipsoid with principle

semi-axes described by the non-degenerate eigenvalues and eigenvectors of ∇Φ|θt
∇Φ|�θt

.
To conclude, the intrinsic signal model in (3.8) and the observation model (3.9) are generic and can

describe a broad range of applications. Therefore, the ability to recover the distances between samples of
the intrinsic process from observations in a non-parametric and unsupervised manner using an estimate
of the MD is very powerful. Indeed, this model was used for system identification [40], molecular
dynamics [10], sleep analysis [22, 46], model reduction [11], speech processing [9] and gene expression
data [17].

3.4 Shrinkage estimators

For any p-by-p matrix Mn estimated from y1, . . . , yn, consider the estimator for MD

d2
Mn

(z, X) = (z − μ)�Mn(z − μ) (3.12)

using Definition 3.2. The extension to Definition 3.1 is straight-forward. In order to quantitatively
measure the performance of any MD estimator dMn

(z, X), it is useful to introduce a loss function. For
any estimator of the form (3.12), the absolute value of the estimation error with respect to the true value
(3.3) is ∣∣∣d2

ΣX
(z, X) − d2

Mn
(z, X))

∣∣∣ =
∣∣∣(z − μ)�[Σ†

X − Mn](z − μ)

∣∣∣ .

As the test vector z is arbitrary, it is natural to consider the worst case and define the loss of Mn at the
(unknown) underlying low-dimensional covariance ΣX :

Definition 3.3. The worst case loss function of an estimator of the form (3.12) for (3.3) is defined as

Ln(Mn, Σ
†
X) := sup

z: ‖z−μ‖Rp=1

∣∣∣(z − μ)�[Σ†
X − Mn](z − μ)

∣∣∣ = ‖Σ†
X − Mn‖op , (3.13)

where ‖·‖op is the matrix operator norm.

It is also reasonable to consider the root mean squared estimation error of all possible test vectors.
The discussion below follows the same line. To keep the notation light, the dependence of Ln on μ and
σ as well as the dependence of Mn on the sample y1, . . . , yn are implicit.

Consider matrices of the form Mη
n := η(Sn), where η : [0, ∞) → [0, ∞) and Sn is the sample

covariance. We call Mη
n the shrinkage estimator of Σ

†
X with η. A typical example is the classical MD
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estimator, which is a shrinkage estimator with η = ηclassical
σ , where

ηclassical
σ (α) =

{
1/(α − σ 2) α > σ 2

0 α ≤ σ 2 . (3.14)

From [23], in the traditional setup when the dimension p is fixed and n → ∞, the classical MD estimator
obtains zero loss asymptotically.

Theorem 3.1. Let p be fixed independently of n. Then,

lim
n→∞ Ln(η

classical
σ (Sn), Σ

†
X) = 0 .

Proof. Since it is well known that (Sn − σ 2Ip) → ΣX as n → ∞, substituting Mn with ηclassical
σ (Sn) in

(3.13) and taking limit with n → ∞ complete the proof. �
When p grows with n, such that p = pn → ∞ with pn/n → β > 0, the situation is quite different. It

is known that in this situation, the sample covariance matrix is an inconsistent estimate of the population
covariance matrix [15], and Theorem 3.1 might not hold; that is, the classical MD estimator might not
be optimal. The following questions naturally arise when β > 0:

1. Is there an optimal shrinkage (OS) estimator with respect to the loss Ln?

2. How does the loss of the optimal shrinkage estimator compare with the loss Ln(η
classical
σ (Sn),

Σ
†
X)?

In the sequel, we attempt to answer these questions.

4. Optimal recovery of precision matrix for MD under the spiked model

We start the derivation of the OS for MD under the linear spiked model, which involves the OS for the
precision matrix. Its extension to the manifold model requires only an additional mild condition, which
will be discussed in Section 5. Without loss of generality, we set the noise level σ = 1 and will discuss
the general case subsequently.

Assumption 4.1 Asymptotic(β). The number of variables p = pn grows with the number of
observations n, such that p/n → β as n → ∞, for 0 < β ≤ 1.

Assumption 4.2 Spiked model. Suppose ΣX = ΣY − σ 2Ip with the eigendecompostion

ΣX = U

[
Σd 0
0 0p−d

]
U� ∈ R

p×p , (4.1)

where d ≥ 0, Σd = diag(�1, · · · �d) is a d × d matrix whose diagonal consists of d spikes �1 > · · · >

�d > 0, which are fixed and independent of p and n, and the off-diagonal elements are set to zero. For
completeness, denote �d+1 = . . . = �p = 0. Note that we assume that all spikes are simple. When
d = 0, it is the null case.
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OPTIMAL RECOVERY OF PRECISION MATRIX 1185

Denote the eigendecompostion of Sn as

Sn = Vndiag(λ1,n, . . . , λp,n)V
�
n ∈ R

p×p, (4.2)

where λ1,n ≥ . . . λp,n ≥ 0 are the empirical eigenvalues and Vn ∈ O(p) is the matrix, whose columns
are the empirical eigenvectors vi,n ∈ R

p, i = 1, . . . , p. Under Assumptions 4.1 and 4.2, results collected
from [2, 3, 25, 28] imply three important facts about the sample covariance matrix Sn.

1. Eigenvalue spread. Suppose Assumption 4.1 holds and considers the null case where Σd = 0.
As n → ∞, the spread of the empirical eigenvalues λi,n converges to a continuous distribution
called the ‘Marcenko–Pastur’ law [25]√

(λ+ − x)(x − λ−)

2πβx
1[λ−,λ+]dx , (4.3)

where λ+ = (1 + √
β)2 and λ− = (1 − √

β)2 are the limiting bulk edges.

2. Top eigenvalue bias. Suppose Assumptions 4.1 and 4.2 hold. For 1 ≤ i ≤ d, the empirical
eigenvalues

λi,n
a.s.−→ λ(�i) =: λi

as n → ∞, where

λ(α) =
{

1 + α + β + β
α

α > �+
(1 + √

β)2 0 ≤ α ≤ �+
(4.4)

is defined on α ∈ [0, ∞) and �+ := √
β. For d + 1 ≤ i ≤ p, since �i = 0, the empirical

eigenvalues λi,n follow the Marcenko–Pastur law (4.3).

3. Top eigenvector inconsistency. Suppose Assumptions 4.1 and 4.2 hold. Let ci,n and si,n be the
cosine and sine values of the angle between the ith population eigenvector and the ith empirical
eigenvector after properly adjusting the sign of each empirical eigenvector, respectively. Note that
there exists a sequence of Rn ∈ O(p) so that RnVn converges almost surely (a.s.) to V ∈ O(p). In
the following, we assume that the empirical eigenvectors have been properly rotated. It is known
that when n → ∞, ci,n

a.s.−→ c(�i) and si,n
a.s.−→ s(�i), where

c(α) :=
{√

α2−β

α2+βα
α > �+

0 0 ≤ α ≤ �+ ,
(4.5)

and

s(α) :=
√

1 − c2(α) (4.6)

are defined on α ∈ [0, ∞).
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The above three properties imply that the classical estimator ηclassical
σ (Sn) may not be the best

estimator in general, and for the purpose of estimating MD in particular. Inspired by [8], we may
‘correct’ the bias of the eigenvalues to improve the estimation.

Definition 4.1. The asymptotic loss function is defined as

L∞(η|�1, . . . , �d) := lim
n→∞ Ln(M

η
n , Σ

†
X) , (4.7)

assuming the limit exists.

To find a shrinkage estimator η that minimizes L∞(η|�1, . . . , �d), it is natural to construct the
estimator by recovering the spikes �i using the biased eigenvalues λi. From the inversion of (4.4),
recalling that �+ = √

β, we can define

�(α) := α + 1 − β +√
(α + 1 − β)2 − 4α

2
− 1 (4.8)

when α > λ+ and consider the shrinkage function

ηinv(α) =
{

1/�(α) α > λ+
0 otherwise.

(4.9)

Note that since taking inverse of a matrix is nonlinear, it is not clear if the above naive idea will lead to
the OS estimator of the precision matrix for the MD estimate. Nevertheless, it is reasonable to expect
the existence of an optimal shrinkage function η∗ satisfying

L∞(η∗|�1, . . . , �d) ≤ L∞(ηinv|�1, . . . , �d)

for any spikes �1, . . . , �d. Below we show that this naive idea, ηinv, is in fact the OS estimator for our
purpose.

4.1 Derivation of the optimal shrinker when σ = 1

Definition 4.2. A function η : [0, ∞) → [0, ∞) is called a shrinker if it is continuous when λ > λ+,
and η(λ) = 0 when 0 ≤ λ ≤ λ+.

Note that this shrinker is a bulk shrinker considered in [8, Definition 3]. Based on the assumption of
a shrinker η, the associated shrinkage estimator converges almost surely, that is

Mη
n

a.s.−→ Mη := Vdiag(η(λ1), . . . , η(λp))V
� , (4.10)

where the right-hand side is the eigendecomposition of Mη. Thus, the sequence of loss functions also
almost surely converges as

Ln(M
η
n , Σ

†
X) = ‖Σ†

X − Mη
n‖op

a.s.−→ ‖Σ†
X − Mη‖op . (4.11)
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OPTIMAL RECOVERY OF PRECISION MATRIX 1187

As a result, the limit in (4.7) exists when η is a shrinker, and we have the following theorem which
in turn gives rise to the optimal shrinker. Note that while the biased eigenvalues could be recovered
by the quadratic relationship between the biased eigenvalues and the population eigenvalues (4.4), true
(population) eigenvectors and empirical eigenvectors are not collinear [8] and so far we do not have
a way to recover the biased eigenvectors. The main idea beyond the proof is respecting this fact, and
when we find the optimal way to correct the eigenvalues, the biased eigenvectors should be taken into
account. With the control of this eigenvector bias, the OS will be derived.

Theorem 4.1 Characterization of the asymptotic loss. Suppose σ = 1. Consider the spiked covariance
model satisfying Assumptions 4.1 and 4.2 and a shrinkage function η : [0, ∞) → [0, ∞). We have a.s.

L∞(η|�1, . . . , �d) = max
i=1,...,p

{Δ(�i, η(λi))} , (4.12)

where Δ : [0, ∞) × [0, ∞) → [0, ∞) is given by

Δ(α, ζ ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
u+(α, ζ ) α > �+ andζ ≤ 1

α

−u−(α, ζ ) α > �+ andζ > 1
α

1/α 0 < α ≤ �+
0 α = 0 ,

(4.13)

where

u+(α, ζ ) = 1

2

⎛⎝ 1

α
− ζ +

√( 1

α
− ζ

)2 + 4
ζ s(α)2

α

⎞⎠ , (4.14)

u−(α, ζ ) = 1

2

⎛⎝ 1

α
− ζ −

√( 1

α
− ζ

)2 + 4
ζ s(α)2

α

⎞⎠ . (4.15)

Proof. Based on the property of ‘simultaneous block-diagonalization’ for Σ
†
X and Mη

n in [8, Section
2], the properties of ‘orthogonal invariance’ and ‘max-decomposability’ for the operator norm in [8,
Section 3], and the convergence of ci,n and si,n in (4.5) and (4.11), we have

Ln(M
η
n , Σ

†
X) = max

i
‖Ai − Bi,n‖op ,

where

Ai =
[

1/�i 0
0 0

]
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Fig. 1. The asymptotic loss for several β = p/n values as a function of the spike strength in a single spike model, i.e. �1 ∈ [0.1, 3],
and �2 = �3 = . . . = �d = 0. The noise level is fixed and set to σ = 1.

when �i 
= 0 and Ai = 02×2 otherwise, and

Bi,n = η(λi,n)

[
c2

i,n ci,nsi,n
ci,nsi,n s2

i,n

]
.

When n → ∞, the loss converges a.s. to maxi ‖Ai − Bi‖op, where

Bi = η(λi)

[
c(�i)

2 c(�i)s(�i)

c(�i)s(�i) s(�i)
2

]
.

Now, we evaluate ‖Ai − Bi‖op for different �i.
When �i > �+, denote the eigenvalues of Ai − Bi as u+(�i, η(λi)) and u−(�i, η(λi)). If η(λi) > 1/�i,

we have 0 ≤ u+(�i, η(λi)) ≤ −u−(�i, η(λi)), and hence, ‖Ai − Bi‖op = −u−(�i, η(λi)); otherwise, we
have u+(�i, η(λi)) ≥ −u−(�i, η(λi)) ≥ 0, and hence, ‖Ai − Bi‖op = u+(�i, η(λi)). For 0 < �i ≤ �+,
since c(�i) = 0, we have

Bi =
[

0 0
0 η(λi)

]
,

which equals 02×2 since η(λi) = 0 by the definition of shrinkage function. Thus, ‖Ai − Bi‖op = 1/�i.
Finally, for �i = 0, Ai is a 2 × 2 zero matrix, and thus, ‖Ai − Bi‖op = η(λi) = 0. This concludes the
proof. �

Figure 1 illustrates the obtained asymptotic loss for several β = p/n values as a function of the
spike strength in a single spike model. It is clear that for each β, there is a transition at �+ = √

β. An
immediate consequence of Theorem 4.1 is that ηinv is an optimal shrinker.
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OPTIMAL RECOVERY OF PRECISION MATRIX 1189

Corollary 4.1. Suppose σ = 1 and Assumptions 4.1 and 4.2 hold. Define the asymptotically optimal
shrinkage function as

η∗ := arg min
η

{L∞(η|�1, . . . , �d)} , (4.16)

where argmin is evaluated on the set of all possible shrinkage functions. Then, η∗ is unique and equals
ηinv given in (4.9). Moreover, its associated loss is

max
i

{
Δ(�(λi))

}
, (4.17)

where

Δ(α) =

⎧⎪⎪⎨⎪⎪⎩
s(α)/α =

√
β

α3/2

√
1+α
β+α

α > �+
1/α 0 < α ≤ �+
0 α = 0 .

(4.18)

Note that this result coincides with the findings reported in [8]. Precisely, it is shown in [8, (1.12)]
that for the operator norm, �(α) (4.8) is the optimal shrinkage for the covariance matrix and precision
matrix. In this corollary, we show that for the MD, which is related to the precision matrix, the optimal
estimator is also achieved by the optimal shrinkage, taking �(α) into account.

Proof. Based on Theorem 4.1, the optimal shrinker η∗ leads to min
η≥0

max
i=1,...,d

{Δ(�i, η(λi))}. Note that for

j = arg max
i=1,...,d

{Δ(�i, η(λi))}, the optimal shrinker achieves min
η≥0

{Δ(�j, η(λj))}. Thus, by the same argument

in [8], if we could solve arg min
η≥0

{Δ(α, η(λ(α)))} for any α > 0, we find the optimal shrinker. To simplify

the notation, we abbreviate η(λ(α)) by η.
For α > �+ and η > 1

α
, we have Δ(α, η) = −u−(α, η). By a direct calculation, we get

∂ηΔ(α, η) = 1

2
+ −( 1

α
− η) + 2s(α)

α√
( 1
α

− η)2 + 4 ηs(α)2

α

> 0.

For α > �+ and 0 ≤ η ≤ 1
α

, we have Δ(α, η) = u+(α, η), and similarly by taking the derivative of
(4.14), we have

∂ηΔ(α, η) = −1

2
+ −( 1

α
− η) + 2s(α)

α

2
√

( 1
α

− η)2 + 4 ηs(α)2

α

≥ 0.

As a result, the partial derivative of the loss function is decreasing when 0 ≤ η ≤ 1/α and increasing
when η > 1/α with a discontinuity at η = 1/α, while the loss function is continuous. Thus, the loss
function reaches the minimum when η = 1/α. These facts imply that η∗(λi) = 1/�(λi) when λi > �+.
Furthermore, by substituting η with η∗ in (4.14) or (4.15), we get Δ(α) = s(α)/α. By definition, η∗ = 0
when 0 ≤ α ≤ �+. Thus, for 0 < α ≤ �+, Δ(α) = 1/α, and for � = 0, Δ(�) = 0. Finally, it is clear
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1190 M. GAVISH ET AL.

Fig. 2. The obtained optimal shrinker with the classical shrinker overlay, for β = p/n = 1 and σ = 1. To enhance the
visualization, the y-axis of the figure is truncated at 1.5 on the right-hand side.

that η∗ is continuous when α > λ+, and η(α) = 0 when 0 ≤ α ≤ λ+. We thus conclude that η∗ is the
optimal shrinker. �

Remark 4.1. We compare our result with another naive approach; that is, obtaining the covariance by
the optimal shrinkage with respect to the operator norm, and then taking the Moore–Penrose pseudo-
inverse. Let ηcov denote the optimal shrinker for the covariance matrix recovery obtained from [8] with
respect to the operator norm loss function. With the same notation, that is ΣY = ΣX + σ 2Ip and σ = 1
as in (4.2), the optimal shrinker satisfies

ηcov(α) =
{

�(α) + 1 α > λ+
1 otherwise ,

(4.19)

where � is defined in (4.8). Note that in [8], the authors aimed to recover ΣY , while we recover Σ
†
X .

In other words, the authors in [8, (1.12)] showed that when the operator norm is considered, the OS
estimator is the same as correcting the eigenvalues according to the relationship (4.4). Thus, our result
η∗ coincides with the inverse of ηcov − 1 when α > λ+.

We note the following interesting phenomenon stemming from Theorem 4.1 and Corollary 4.1. If
there exists a non-trivial spike �i > 0 that is weak enough so that �i is sufficiently small compared with
�+, then L∞(η|�1, . . . , �d) is dominated by 1/�i. Consequently, in this large p large n regime, we cannot
‘rescue’ this spike, and the associated signal is lost in the noise, as can be seen in Corollary 4.1.

Figure 2 illustrates the obtained optimal shrinker with the classical shrinker overlay, for β = p/n =
1 and σ = 1. Clearly, compared with the classical shrinker, the obtained optimal shrinker truncates the
eigenvalues more aggressively.
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4.2 Derivation of the optimal shrinker when σ 
= 1

To handle the general case when σ 
= 1, we first re-scale the data and model by setting �′
i := �i/σ

2 and
λ′

i,n := λi,n/σ
2 and consider the following shrinker defined on [0, ∞):

ησ (α) := η(α/σ 2)

σ 2 . (4.20)

Note that since η plays the role of estimating the precision matrix, we re-normalize it by dividing
η(α/σ 2) by σ 2. The shrinkage estimator for Σ

†
X becomes Mησ

n := ησ (Sn), the general optimal shrinker
becomes

η̃∗(α) =
{

1
σ 2�(α/σ 2)

α > σ 2�+
0 0 ≤ α ≤ σ 2�+

(4.21)

and the associated loss is

max
i

{
Δ(�( λi

σ 2 ))

σ 2

}
.

5. Extension to the manifold model

We now come back to the manifold learning problem with the manifold setup described in Section 2.1.
We argue that despite the challenge mentioned in Section 3.1, the developed theorem in Section 4.1 can
be extended to study the manifold model in the large p large n setup with proper modifications. Note
that For each n, there exists an orthonormal basis {un,l}p

l=1 of Rp so that the d-dimensional compact
smooth manifold M is isometrically embedded in the subspace spanned by {un,l}K

l=1 for a fixed K ∈ N.
In other words, while the rank of Σx associated with O(x) depends on x, it is bounded uniformly from
above by K. Note that K in general can be much larger than d, yet it is fixed due to the well-known
Nash’s isometric embedding theory [27], which guarantees the existence of K that is independent of p
and K ≤ d(3d + 11)/2. We put the following assumption.

Assumption 5.1. Assume O(x) = φ(Bε(0)), where Bε(0) is a Euclidean ball centered at 0 with the
radius ε > 0, and φ : Rd → M is diffeomorphic on Bε(0). We call O(x) an ellipsoid.

Note that since φ is diffeomorphic, in general, O(x) is not really an ellipsoid unless φ is linear. But
to simplify the terminology, we abuse the notation and still call it an ellipsoid. Also note that the elliptic
radii of O(x) is of order ε > 0 with the implied constant depending on the Jacobian of φ when ε is
sufficiently small.

Based on the developed theorem in Sections 4.1 and 4.2, we state the following theorem that secures
the recovery of MD under the manifold model in Definition 3.1. The basic idea beyond this theorem is
twofold. First, it relies on the result from [24, Lemmas 3 and 6] stating that when ε > 0 is sufficiently
small, there is a sufficiently large gap between the first d eigenvalues of Σx and the remaining small
eigenvalues. Second, as discussed in Section 4.1, any non-trivial eigenvalue �i that satisfies �i � �+ is
ignored by the optimal shrinkage.
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Theorem 5.1. Assume Assumptions 4.1–5.1 hold. Fix x ∈ M. Suppose σ = σ(ε) so that
σ 2√βε−d−2 → 0 and σ 2√βε−d−4 → ∞ when ε → 0. Assume the maximal elliptic radius of O(x) is
mε, where m = m(ε) � 1, and the ratio of the maximal and minimal elliptic radii is fixed for all ε > 0.
When ε is sufficiently small, all non-trivial eigenvalues of Σx except the top d eigenvalues are set to
zero by the optimal shrinkage η̃∗.

Proof. By [24, Lemma 6], the local covariance matrix has the following asymptotical expansion when
ε is sufficiently small:

Σx = |Sd−1|P(x)εd+2

d(d + 2)
[ι∗|x∇φ|φ−1(x)][ι∗|x∇φ|φ−1(x)]

� + O(εd+4), (5.1)

where |Sd−1| is the volume of Sd−1. A derivation, similar to the derivation in [24, Lemma 3], yields that
when ε is sufficiently small, the top d eigenvalues of Σx are of order εd+2 and the remaining eigenvalues
are of order equal to or higher than εd+4. In other words, the ‘signal strength’ is of order εd+2, while the
noise strength is σ > 0. Note that there are at most K non-zero eigenvalues.

By (4.21), all eigenvalues smaller than σ 2�+ = σ 2√β are eliminated by the optimal shrinkage.
Combining the above, since β > 0, P(x) and m are all fixed, when ε is sufficiently small so that
σ 2√βε−d−2 is sufficiently small and σ 2√βε−d−4 is sufficiently large, all non-trivial eigenvalues of Σx
except the top d eigenvalues are set to zero by the optimal shrinkage η̃∗. Indeed, by the assumption that
σ 2√βε−d−2 → 0 and σ 2√βε−d−4 → ∞, we know that c1ε

d+2 ≥ σ 2√β and c2ε
d+4 ≤ σ 2√β when

ε is sufficiently small for some universal constants c1 and c2. Therefore, λl ≥ σ 2√β for l = 1, . . . , d
and λl ≤ σ 2√β for l = d + 1, . . . , K, and hence, we conclude the proof. �

We conclude this section with several remarks on this theorem. First, the condition σ 2√βε−d−2 → 0
seems to be limited since the noise level goes to zero when ε goes to zero. This condition is needed if we
want to properly estimate the precision matrix locally within an ellipsoid over a manifold with elliptic
radii of order ε. In practice, ε plays the role of ‘bandwidth’ which reflects the ‘resolutionof how accurate
we could estimate the quantity we have interest. For example, in the motivating EIG example discussed
in Section 3.3, we need an accurate precision matrix estimation so that the geodesic distance in the latent
space can be accurately estimated. Such precision matrix via (3.10) is less affected by the curvature if ε

is small. However, if the noise level σ is fixed, then ε is bounded from below, so that we have a limited
accuracy when we recover the geodesic distance on the latent space, and hence the latent space itself by
DM.

Second, this theorem also suggests that we always need the noise to attain a reasonable estimate of
MD; that is σ 2√βε−d−4 → ∞. This statement is certainly counterintuitive, since in the linear spiked
model, noise absence is desired and beneficial. To clarify this point, note that in general, the dimension
of the manifold is unknown, but it is needed so that we can define a sensible MD on the manifold in
Definition 3.1. See the discussion in Section 3.2. Thus, a dimension estimation is needed. This theorem
mainly says that when σ > 0 is sufficiently large so that the condition in Theorem 5.1 holds, we could
get the MD in Definition 3.1 even if we do not know the dimension. If the noise is not sufficiently big
and we do not know the dimension, then we cannot obtain the desired MD. If the dimension is known,
or can be robustly estimated when noise exists, then this lower bound condition can be removed. The
above facts stem from the complicated nonlinear interaction of nonlinear manifold structure and high
dimensional noise. Finally, we mention that this result extends the EIG study in [24] under the manifold
model when noise exists.
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OPTIMAL RECOVERY OF PRECISION MATRIX 1193

Fig. 3. (top) The performance of the optimal shrinker and the classical shrinker when d = 1. (bottom) The performance of the
optimal shrinker and the classical shrinker when d = 4. The black curve represents the median of the difference between the loss
of the classical shrinker and that of the theoretical optimal loss presented in log scale. The blue curve represents the median of the
difference between the loss of the optimal shrinker and the theoretical optimal loss presented in log scale. The error bars depict
the interquartile range of each shrinker (in log scale). The vertical blue line is σ = 1/

√
�+, which indicates the tolerable noise

level for the given β and signal strength.

6. Simulation study

To numerically compare the optimal shrinker and the classical shrinker, we set β = 0.2, 0.4, . . . , 1 and
consider the number of samples n = 300 so that p = βn. For simplicity, we set �i = i for i = 1, . . . , d.
We consider d = {1, 4}. Suppose xi, i = 1, . . . , n are sampled i.i.d. from the random vector

∑d
�=1 ζ�e�,

where e� ∈ R
p is the unit vector with �th entry 1, ζ� ∼ N(0, 1) for � = 1, . . . , d, and ζ� is independent

of ζk when � 
= k. The noisy data are simulated by yi = Axi + σ 2ξ , where ξ ∼ N
(

0, Ip

)
is the noise

matrix, ξ is independent of ζ� and A ∈ O(p) is randomly sampled from O(p). In the simulation, we
take σ = 0.225, 0.45, . . . , 1.8. For each σ , we repeat the experiment 200 times and report the mean and
variance of the loss Ln.

Figure 3 shows the loss of the optimal and classical shrinkers when d = 1 and d = 4 in a logarithmic
scale. We observe that the loss using the classical shrinker is significantly larger. This stems from the
fact that in the large p and large n regime, there are eigenvalues greater than σ 2 that are not associated
with the signal. When applying the classical shrinker (3.14) (the Moore–Penrose pseudo-inverse), these
irrelevant eigenvalues contribute significantly, leading to high loss. Conversely, the optimal shrinker is
much more ‘selective’ (as illustrated in Fig. 2), associating larger eigenvalues with the noise, thereby
increasing the robustness of the estimator.

Recall that our main motivation for considering MD in the high-dimensional regime p � n
comes from manifold learning. Next, we test the performance of the proposed OS algorithm on high-
dimensional data lying on a lower dimensional manifold. Consider the following model:

Y = X + σξ , (6.1)
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Table 1 The normalized loss of the optimal shrinker estimator Mn = η̃∗(Sn) and the classical
estimator Mn = ηclassical

σ (Sn) in the manifold setup. The mean and the standard deviation over 500
realizations are reported.

Error (Mn, y1) Error (Mn, y2)

ηclassical
σ (Sn) η̃∗(Sn) ηclassical

σ (Sn) η̃∗(Sn)

σ = 1 18.78 ± 1.16 0.78 ± 0.54 55.98 ± 2.09 1.32 ± 0.93
β = 0.1 σ = 1.5 23.72 ± 1.19 1.41 ± 0.87 59.42 ± 2.10 2.59 ± 1.74

σ = 2 33.54 ± 1.53 2.18 ± 1.31 64.04 ± 1.69 5.19 ± 2.99
σ = 1 26.86 ± 2.70 2.41 ± 1.55 60.88 ± 4.22 4.06 ± 2.54

β = 0.5 σ = 1.5 42.66 ± 3.43 4.78 ± 2.65 69.06 ± 3.43 10.65 ± 5.38
σ = 2 58.59 ± 3.24 9.84 ± 4.63 77.24 ± 2.81 31.52 ± 17.56
σ = 1 34.70 ± 4.89 4.05 ± 2.35 64.11 ± 5.57 8.39 ± 3.91

β = 1 σ = 1.5 54.72 ± 4.46 10.62 ± 4.69 75.54 ± 3.63 23.97 ± 12.49
σ = 2 69.65 ± 3.97 21.35 ± 7.94 83.30 ± 2.78 62.99 ± 19.34

where X is sampled from a curved manifold with one chart M embedded in R
p that is parametrized by

[
s, t, 4

( s

3

)2 + 5
( t

3

)2
, 0, . . . , 0

]�
∈ R

p , (6.2)

s, t ∈ [−5, 5], ξ ∼ N
(

0, Ip

)
∈ R

p and σ > 0 is the noise level. Note that since the precision

matrix estimation and MD estimation are both local, we consider this one-chart manifold without loss
of generality. Suppose the ambient dimension is fixed at p = 100. For various values of β > 0, we
sample n = �p/β� pairs (s, t) uniformly from [−5, 5] × [−5, 5] and generate n nonuniform points on
M by (6.2). Then, these points are corrupted by additive noise with various levels σ according to (6.1).
The normalized loss of MD is computed by

Error(Mn, y) :=
∣∣∣dMn

(y, X) − d
Σ

†
X
(y, X)

∣∣∣
d
Σ

†
X
(y, X)

,

where y ∈ M ⊂ R
p is an arbitrary point on ehe manifold and Mn is the estimated covariance matrix. We

examine two reference points: y1 = [0, . . . , 0] ∈ M and y2 = [2, 2, 4, 0, . . . , 0] ∈ M. For each case, the
simulation was repeated for 500 times, and the mean and standard deviation of errors are reported. In
Table 1, we compare the performance of the OS estimator, η̃∗(Sn), where Sn is the sample covariance, to
the performance of the classical estimator ηclassical

σ (Sn). We observe that the OS outperforms the classical
estimator in this well-controlled manifold setup, and we could see that the larger the noise, the worse
the performance is. Moreover, the higher the dimension is, that is, the larger the β is, the worse the
performance is.
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7. Application to dynamical system analysis

Next, we apply our OS estimator on the multi-scale reduction problem studied in [11]. We consider the
following two-dimensional SDE:

dx1(t) = 3dt + dW1(t)

dx2(t) = −x2(t)

ε
dt + 1√

ε
dW2(t) , (7.1)

where W1 and W2 are independent standard Bronwian motion and ε > 0 is a small constant quantifying
the scale of x2. This SDE defines a dynamical system with two time scales, where x1 is a slow variable
and x2 is a fast variable. Suppose the state of the system (x1(t), x2(t)) is hidden and we have access to it
through an embedding in a high-dimension space via the map

y(t) =

⎡⎢⎢⎢⎢⎢⎣
y1(t)
y2(t)
y3(t)

...
yp(t)

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
f1(x1(t), x2(t))
f2(x1(t), x2(t))

0
...
0

⎤⎥⎥⎥⎥⎥⎦ . (7.2)

In addition, suppose the high-dimensional observation y(t) is contaminated by noise

z(t) =

⎡⎢⎢⎢⎢⎢⎣
z1(t)
z2(t)
z3(t)

...
zp(t)

⎤⎥⎥⎥⎥⎥⎦ = y(t) +

⎡⎢⎢⎢⎢⎢⎣
w1(t)
w2(t)
w3(t)

...
wp(t)

⎤⎥⎥⎥⎥⎥⎦ , (7.3)

where

dwi(t) = σ ∗ dΩi(t),

Ωi(t) are independent standard Brownian motion, and σ is the noise level.
In [11], diffusion maps [5] with a Gaussian kernel based on the MD [31] were applied to effectively

reduce the dimensionality of the system by attenuating the fast variable and recovering the slow variable.
Specifically, the following kernel matrix W ∈ R

N×N was used:

Wij = exp

(
−‖y(ti) − y(tj)‖2

M

σ 2
kernel

)
, (7.4)

where ‖ · ‖M is defined by

‖y(ti) − y(tj)‖2
M := 1

2
(y(ti) − y(tj))

T
(

C†(y(ti)) + C†(y(tj))
)

(y(ti) − y(tj)), (7.5)
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where C(y(t)) is the local population covariance of the observed stochastic process at the point y(t), and
σkernel is the selected kernel scale.

We generate N samples of the noisy observation z(ti), where ti := idt and i = 1, . . . , N. At each
sampling point ti, we generate a trajectory consisting of q samples of noisy observations with sampling
time interval δt starting at z(ti), such that we have q samples: z(t′1), z(t′2), ..., z(t′q) drawn approximately
from the local distribution at z(ti). Here, we set δt = o(ε), where ε > 0 is from (7.1). Let Nz denote the
local sample mean of z(t′1), . . . , z(t′q). The local sample covariance is given by

Ĉ(y(ti)) = 1

δt(q − 1)

q∑
j=1

(z(t′j) − z̄)(z(t′j) − z̄)�. (7.6)

For the estimation of the local precision at y(ti), that is C†(y(ti)) from the noisy samples z(t), we test
two methods. The first method is based simply on the pseudo-inverse of Ĉ(y(ti)). The second method is
based on the OS estimator ησ that is applied to (7.6) to estimate the local precision estimation. Once the
local precision matrices are estimated, we construct the following distance matrix D, whose elements
are given by

Di,j = 1

2
(z(ti) − z(tj))

T
(

Ĉ†(y(ti)) + Ĉ†(y(tj))
)

(z(ti) − z(tj)). (7.7)

We examine three cases of observation functions f1 and f2
Case I. Let

f1(x1(t), x2(t)) = x1(t), f2(x1(t), x2(t)) = x2(t). (7.8)

and set ε = 10−3, dt = 10−4, δt = 10−7, N = 3000, p = 50, q = 50, σ = 0.1 and σkernel to the 20
percent quantile of the distance matrix D acquired from (7.7). These parameters are taken from [11].

Case II. Let

f1(x1(t), x2(t)) = x1(t) + 2x2(t), f2(x1(t), x2(t)) = x2(t), (7.9)

and set the parameters as in Case I.
Case III. Let

f1(x1(t), x2(t)) = x1(t) + x2
2(t), f2(x1(t), x2(t)) = x2(t). (7.10)

We set the parameters as in Case I and II, except for δt, which is set to a finer value 10−10, and σkernel,
which is set to 5% quantile of the distance matrix D. These observations functions create a ‘half-moon’
shape, and where considered in [11].

In Fig. 4, we compare the results obtained for Case I by diffusion maps based on three distance
matrices. The first distance matrix is a variant of (7.7), where the noisy signal z(t) is replaced by the
clean signal y(t). These results are plotted in the leftmost column. The second distance matrix is (7.7),
where the estimates of the precision matrix are based on the pseudo-inverse. These results are plotted
in the middle column. The third distance matrix is (7.7), where the estimates of the precision matrix
are based on the proposed OS. These results are plotted in the rightmost column. In the first row, we
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OPTIMAL RECOVERY OF PRECISION MATRIX 1197

Fig. 4. The results obtained for Case I by diffusion maps with different distances. Left column: the distance matrix is a variant of
(7.7), where the noisy signal z(t) is replaced by the clean signal y(t). Middle column: the distance matrix is defined in (7.7), where
the estimates of the precision matrix are based on the pseudo-inverse. Right: the third distance matrix is defined in (7.7), where
the estimates of the precision matrix are based on the proposed OS. First row: the scatter plot of the slow variable x1 and the most
correlated eigenvector of the transition matrix associated with diffusion maps. Second row: the scatter plot of the fast variable x2
and its most correlated eigenvector of the transition matrix associated with diffusion maps. The correlation between the respective
variables and eigenvectors is shown in red above each subplot. Third row: the eigenvalues of diffusion maps, where dk is the kth
largest eigenvalue. The eigenvalues corresponding to the eigenvectors presented in the first and second rows (corresponding to the
slow and fast variables) are marked by red and blue circles, respectively.

show a scatter plot of the slow variable x1 against its most correlated eigenvector of the transition matrix
associated with the diffusion map. In the second row, we show the scatter plot of the fast variable x2
against its most correlated eigenvector of the transition matrix associated with the diffusion map. The
correlation between the respective variables and eigenvectors is shown in red above each subplot. In the
third row, we present the eigenvalues of the transition matrix associated with the diffusion map, where
dk is the kth largest eigenvalue. The eigenvalues corresponding to the eigenvectors presented in the first
and second rows (corresponding to the slow and fast variables) are marked by red and blue circles,
respectively. Figures 5 and 6 are the same as Fig. 4, but for Case II and Case III.

We observe that all three figures present consistent results and trends. Focusing first on the leftmost
column, we see that the use of MD in diffusion maps based on the clean signal recovers accurately the
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Fig. 5. The results obtained for Case II by diffusion maps with different distances. The meaning of the plot is the same as that
detailed in the caption of Fig. 4.

slow variable x1 and attenuates the fast variable x2, conforming to the results presented in [11] for only a
two-dimensional observations. In the middle column, we see that the addition of noise hinders both the
recovery of the slow variable as well as the attenuation of the fast variable, when the pseudo-inverse is
used for the estimation of the MD. In contrast, in the rightmost column, we see that when the proposed
OS is used, the obtained results based on the noisy signal are comparable to the results obtained based
on the clean signal in the leftmost column.

These results demonstrate, in the context of manifold learning, that the estimation of the MD based
on the pseudo-inverse fails in the high-dimensional regime with the presence of noise. In addition, they
show that using the proposed optimal shrinker indeed offers a remedy and gives rise to accurate manifold
learning.

8. Conclusions

We proposed a new estimator for MD based on precision matrix shrinkage. For an appropriate loss
function, we show that the proposed estimator is asymptotically optimal and outperforms the classical
implementation of MD using the Moore–Penrose pseudo-inverse of the sample covariance. Importantly,
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Fig. 6. The results obtained for Case III by diffusion maps with different distances. The meaning of the plot is the same as that
detailed in the caption of Fig. 4.

the proposed estimator is particularly beneficial when the data are noisy and in high-dimension, a case in
which the classical MD estimator might completely fail. Consequently, we believe that the new estimator
may be useful in modern data analysis applications, involving for example, local principal component
analysis, metric design and manifold learning.

In this work, we focused on the case in which the intrinsic dimensionality of the data (the rank of
the covariance matrix) d is unknown, and therefore, it was not explicitly used in the estimation. Yet,
in many scenarios, this dimension is known. In this case, it could be beneficial to consider a direct
truncation and use only the top d eigen-pairs for the estimation of the precision matrix. While the
benefit from such a truncation has been shown empirically in several applications [22, 41, 46, 48], it
still requires a systematic investigation. For example, identifying the rank of the signal, or estimating
the dimension of a manifold, are by themselves highly challenging tasks [16, 19]. Note that in the
particular manifold setup, knowing the manifold dimension is essentially different from the rank-aware
shrinker discussed in [8]; as we showed here, under the manifold setup, the rank of the covariance
matrix associated with points residing inside a small neighborhood of any point on the manifold could
be much larger than d. Since the focus of this paper is MD recovery, the associated loss function for the
OS of the precision matrix is the operator norm. As is discussed in [8], there are other loss functions that
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we can choose, such as the Frobenius norm, the nuclear norm, etc. It would be interesting to explore if
the OS for the precision matrix under those norms when they are needed. We shall also mention that
the manifold model discussed in this paper is a simplified model for more complicated datasets with
more nonlinear structure. While it is possible to apply the principle component analysis approach to
denoise the data when the smooth compact manifold assumption holds thanks to the fixed K mentioned
in Section 5, in general, this approach might not be optimal, particularly when the geometric structure is
more complicated. The current work explores this situation with a simplified manifold model and paves
a way toward more complicated setups, and these cases will be explored in our future work.
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