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ABSTRACT

A low-dimensional dynamical system is observed in an experiment as a high-dimensional signal, for example, a video of a chaotic pendulums
system. Assuming that we know the dynamical model up to some unknown parameters, can we estimate the underlying system’s parameters
by measuring its time-evolution only once? The key information for performing this estimation lies in the temporal inter-dependencies
between the signal and the model. We propose a kernel-based score to compare these dependencies. Our score generalizes a maximum
likelihood estimator for a linear model to a general nonlinear setting in an unknown feature space. We estimate the system’s underlying
parameters by maximizing the proposed score. We demonstrate the accuracy and efficiency of the method using two chaotic dynamical
systems—the double pendulum and the Lorenz ’63 model.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0044529

The purpose of many experimental designs is to measure a quan-
tity of interest by observing a dynamical system and compar-
ing the observations to a known model. This procedure can be
difficult when the system is chaotic and can be even more chal-
lenging when the correspondence between the measurements and
the model, the observation function, is unknown. For a single
experiment, i.e., when the observed data is a single time series,
learning the unknown observation function is not an option.
Instead, we construct a kernel-based score in a way that is agnostic
to the unknown observation function. We can derive a max-
imum likelihood (ML) estimator for identifying the observed
dynamical system’s parameters by maximizing that score. The
intuition behind our approach is that even though the map
between the coordinates/model and the observations is unknown,
the dynamics of the data convey enough information on the
dynamics of the model with the true parameter, thus facilitat-
ing an informed parameter estimation procedure. We propose
two optimization schemes for maximizing our score. Finally, we

demonstrate that our method can accurately estimate the govern-
ing parameters for two chaotic dynamical systems from complex
and high-dimensional data.

I. INTRODUCTION

Consider a common situation in experimental sciences—an
experiment is designed to measure a quantity of interest by observ-
ing a dynamical system and comparing the observations to a known
model. But can this measurement be performed when the model is
complex and chaotic? Furthermore, is this procedure possible when
the correspondence between the measurement and the model, the
observation function, is unknown?

For example, it is straightforward to estimate the gravitational
free acceleration g by observing a pendulum; the angle x(t) of a pen-
dulum of length ` varies periodically according to the harmonic
oscillator ordinary differential equation (ODE) ẍ(t) = −(g/`)x. By
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FIG. 1. The schematic settings of our problem. We are given the observations
y(t) and a mechanism to generate x(t;ω) for every ω ∈ � (an ODE). What is
the true underlying parameter ω∗ driving y(t)?

solving the ODE, g may be estimated using g = ν2`, where the fre-
quency ν can be directly observed from the pendulum’s oscillations.
But can such a measurement scheme be applied to the chaotic double
pendulum, where no easily observable parameter like the frequency
ω exists?

The double pendulum example illustrates a more general class
of problems (see Fig. 1). In an experiment, an observed signal y(t)
is related to its governing model x(t;ω∗) by specific yet unknown
parameters (or parameter vector) ω∗ and an unknown observation
function G, i.e.,

y(t) = G(x(t;ω∗); ζ ),

where ζ is a noise source. The purpose of this study is to estimate
the system’s parameters ω∗ among all possible parameters ω in a
parameter space�, using the observation y(t) and the general model
x(t;ω). Critically, we note that even though the map ω 7→ x(t;ω)

is known, the map x
G
7→ y is unknown to us. Therefore, we only

know “half” of the forward map ω 7→ y(t). Since the forward map is
unknown, this problem does not fit into the usual notion of inverse
problems.3,61 Conversely, since we only observe a single experiment
and do not have a lot of data, it is not straightforwardly amenable to
standard machine learning methodology (see Sec. VI A for details).

We propose a kernel-based approach to estimate the system’s
parameters ω∗. We first study the case of a linear observation
function G. A maximum likelihood estimation of ω∗ then yields

FIG. 2. The schematics of the proposed solution. For every ω ∈ �, a kernel
Kx(ω) is computed. This kernel is compared to the observation kernel Ky , and
the estimated ω̂ is chosen to maximize their similarity score. The hypothesized
ω values are either predetermined (Algorithm 1) or dynamically determined using
an optimization scheme (Algorithm 2).

a maximization problem for a normalized variant of the cross-
covariance between the observations and the model. To carry this
idea to the general nonlinear case, we “lift” both the observations
and the model to an infinite-dimensional Hilbert space (feature
space36,55). In the feature space, the two signals are again linearly
dependent. By constructing kernels for the observations y(t) and
for the model x(t;ω), a covariance-like score in the feature space
is computed (see (15)) and maximized to estimate the system’s
parameters. By applying our method (Algorithms 1 and 2) to two
examples of chaotic dynamical systems—the double pendulum and
the Lorenz system—we demonstrate empirically that maximizing
the kernel-based score indeed yields an accurate estimate for ω∗.

The application of the so-called kernel trick to generalize the
linear notion of covariance has been used for various statistical
tasks such as kernel principle component analysis (PCA), ker-
nel canonical-correlation analysis (CCA), and the Hilbert–Schmidt
Independence criteria.6,9,28,30–32,34,47,49,54 Kernels were also used in this
context of kernel density estimators (KDEs)63 or for extracting latent
variables from multi-modal observations as in Refs. 44, 42, 53,
and 72. While resembling to some nonlinear kernel statistical prob-
lems on the one hand, and to some machine learning and model
discovery problems on the other hand,4,8,12,15,18,23,25,69 we note that
the problem of parameter learning under an unknown observation
function is stated here, to the best of our knowledge, for the first
time. Consequently, our kernel-based score does not seem to appear
in the kernel methods literature (see discussion in Sec. III).

The remainder of this paper is organized as follows. Section II
presents the problem in formal terms. In Sec. III, we derive our
method initially for the linear case, and then to the general nonlin-
ear case. Section IV presents the main algorithms of this paper—the
search-based Algorithm 1 and the optimization-based Algorithm 2.
The applications of our approach to the double pendulum and to the
Lorenz system are presented in Sec. V. Finally, we discuss potential
applications of the method and its relationship to previous stud-
ies on model discovery, inverse problems, and kernel methods in
Sec. VI.

II. PROBLEM FORMULATION

Consider a parametric family of autonomous ordinary differ-
ential equations (ODEs),

{

ẋ(t;ω) = f(x;ω), ω ∈ � ⊆ R
m,

x(0;ω) = x0(ω) ∈ R
d,

(1)

where � ⊆ R
m is a convex set of possible parameters and f is suf-

ficiently smooth such solutions are unique and exist globally. The
dynamics x(t;ω) are, therefore, completely determined by a fixed
vector of parameters ω∗ ∈ �. Assume that ω∗ is unknown and that
we do not observe x(t;ω∗), but only a measurement y(t) ∈ R

D for
some dimension D. This observation can be viewed as a noisy lifting
of x(t;ω∗) from the latent space R

d to the ambient observation space
R

D by an unknown and possibly noisy map, i.e.,

y(t) = G(x(t;ω∗); ζ ), G : R
d × Z → R

D, (2)

where Z is some manifold in which ζ(t) is a stationary random
process with δ auto-correlation and the observation function G(·, 0)
guarantees identifiability ofω (see Ref. 64 and Sec. IV C for details).74
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For example, if x(t;ω) describes the trajectory of a ballistic pro-
jectile in R

3, its video will embed this trajectory in R
D, where D

is the number of pixels in each video frame. As a practical mat-
ter, we will further assume that y(t) is measured in discrete times
{tj = (j − 1)1t}N

j=1
for some 1t > 0. The main problem of this

paper can now be formally stated:

Problem. Given

(1) A single observed time series {y(tj)}
N
j=1

, defined by (2) with

unknown G and ω∗, and
(2) A solution x(t;ω) to the ODE (1) for all t ≥ 0 and ω ∈ �,

find the vector of underlying parameters ω∗.

Remark 1. Uncertainty in the observations may stem from several
sources—modeling misspecification, numerical errors, measurement
noise, nuisance variables in the experiment, etc. The introduction of
randomness in (2) is a modeling decision aimed to capture all of these
uncertainty sources.

We start by considering the simplified linear variant of (2), in
which we can derive a maximum likelihood estimator of ω∗. In the
general nonlinear case, we use the kernel trick to map the phase
space coordinates x(t;ω) and the observations y(t) into a Hilbert
space (feature space) where the linear approach can be employed
again.

III. DERIVATION

A. The linear case—A maximum likelihood approach

It is instructive to first consider (2), where G is linear in x and
additive with respect to a Gaussian noise term, i.e.,

ȳ(tj) = Ax̄(tj;ω
∗)+ ζj, j = 1, . . . , N, (3)

where x̄(t;ω) = x(t;ω)− Eτx(τ ;ω) and ȳ(t) = y(t)− Eτ y(τ ) are
centered, A ∈ MD,d(R), and for each 1 ≤ j ≤ N the term ζj ∈ R

D is
drawn iid from N (0, σ 2I) for some σ > 0.

Remark 2. We center the observations y and model coordinates x
since the choice of origin in either R

D and R
d is arbitrary from a mod-

eling/physics perspective (see more on the role of such invariances in
Sec. IV C). In practice, the time-averages should be replaced by their
empirical estimates, e.g., Eτ y(τ ) ≈ N−1

∑

j y(tj).

To estimate ω∗ from the observations {y(tn)}
N
n=1, we use a max-

imum likelihood (ML) estimator.1 The ML estimator is defined as

ω̂ml = arg max
ω∈�

A∈MD,d(R)

Probζ1 ,...,ζN(ȳ1, . . . , ȳN|ω, A).

Since the log function is monotonic increasing, we can replace the
likelihood function by log-likelihood to exploit the independence of

the normal ζj’s to get

ω̂ml = arg max
ω∈�

A∈MD,d(R)

log Probζ1 ,...,ζN(ȳ1, . . . , ȳN|ω, A)

= arg max
ω∈�

A∈MD,d(R)

−

∑N
n=1 ‖ȳ(tn)− Ax̄(tn,ω)‖2

2

2σ 2
−

DN

2
log(2πσ 2).

(4)

Since D, N, σ , and the observations y(tj) are independent of ω and
A, we can simplify the objective function on the right-hand-side as
follows:

ω̂ml = arg min
ω∈�

A∈MD,d(R)

N
∑

n=1

‖ȳ(tn)− Ax̄(tn,ω)‖2
2

= arg min
ω∈�

A∈MD,d(R)

‖AX(ω)‖2
F − 2〈AX(ω), Y〉 + ‖Y‖2

F

= arg min
ω∈�

A∈MD,d(R)

‖AX(ω)‖2
F − 2〈AX(ω), Y〉, (5)

where X(ω) and Y are matrices whose jth columns are x̄(tj;ω) and
ȳ(tj), respectively, 〈B, C〉 =

∑

i,j Bi,jCi,j is the Frobenius inner prod-

uct on MD,d(R) and ‖B‖F = 〈B, B〉1/2 is the Frobenius norm. Next,
we show that one can also normalize (5) by ‖AX‖F. To see that, fix
ω ∈ � and O ∈ MD,d(R) such that A = λO, ‖OX‖F = 1, and λ ∈ R.
Then, by direct differentiation in λ,

‖AX(ω)‖2
F − 2〈AX(ω), Y〉 = λ2 − 2λ〈OX(ω), Y〉

is minimized when λ = 〈OX, Y〉. Hence,

ω̂ml = arg min
ω∈�

‖OX‖F=1

〈OX(ω), Y〉2 − 2〈〈OX(ω), Y〉OX(ω), Y〉.

By setting O = A‖AX‖−1
F , we get that the maximum likelihood

estimator is

ω̂ml = arg max
ω∈�

A∈MD,d(R)

〈AX(ω), Y〉F2

‖AX(ω)‖2
F · ‖Y‖2

F

, (6)

where, since Y is a constant matrix, we divide by ‖Y‖2
F so that the

argument on the right-hand side is always ≤ 1.

B. Maximum likelihood in the nonlinear settings—A

kernel approach

In the general model (2), the observations y(t) do not depend
linearly on the model coordinates x(t) as in (3). Rather, the
two depend nonlinearly via G [see (2)]. If we knew G, the lin-
ear maximum likelihood approach (6) could be applied to y and
G(x(·;ω∗); ζ ) in R

D. Even though we do not know G, the relation
(2) implies that x and y are linearly dependent under nonlinear
transformations ψ : R

d → R
D and φ : R

D → R
D (feature maps),

respectively, i.e.,

φ(y(t)) = ψ(x(t;ω∗); ζ ). (7)

In what follows, we assume that the noise term ζ is again Gaussian
and additive, i.e., φ(y(t)) = ψ(x(t;ω∗))+ ζ where ζ ∼ N (0, σ 2I).
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In this case, one possible set of feature maps is simply φ(y) = y
and ψ(x) = G(x). However, we show in the numerical experiments
that our algorithm can estimate ω∗ even for non-Gaussian and
non-additive noise sources (see Sec. V C).

Remark 3. Seemingly, the nonlinear model (7) is more restrictive
than its linear counterpart (3), absent of the freedom to choose the
linear transformation A. Given the maps φ and ψ , however, A is
“absorbed” into the definitions of φ and ψ .

Using the same maximum likelihood argument of Sec. III A, the
nonlinear model (7) yields the following estimator of ω∗ [compare
with (6)]:

ω̂ = arg max
ω∈�

〈9̄(ω), 8̄〉2
F

‖9̄(ω)‖2
F · ‖8̄‖2

F

, (8a)

where

9̄·,j(ω) := ψ(x(tj;ω))−
1

N

N
∑

i=1

ψ(x(ti;ω)),

8̄·,j := φ(y(tj))−
1

N

N
∑

i=1

φ(y(ti)).

(8b)

We further note that

‖8̄‖2
F = Tr(KyH), ‖9̄(ω)‖2

F = Tr(Kx(ω)H), Hij := δij −
1

N
,

(9)
where the Gram matrix Ky is defined by

K
y
ij := ky(y(ti), y(tj)), ky(y, y′) := 〈φ(y),φ(y′)〉 (10)

for every 1 ≤ i, j ≤ N, and Kx and kx are defined analogously to (10)
(see the details in Appendix A).

We can, therefore, rewrite (8a) as

ω̂ = arg max
ω∈�

〈9̄(ω), 8̄〉2
F

‖Kx(ω)H‖2
F‖Ky(ω)H‖2

F

. (11)

In practice, we do not know what the maps φ and ψ are and,
consequently, cannot compute their corresponding kernels and
Gram matrices (10). However, the kernels kx and ky are both
Mercer kernels, i.e., their Gram matrices (10) are always positive
semi-definite,52 they define an inner product on some (infinite-
dimensional) reproducing kernel Hilbert Space H.75 This observa-
tion suggests that one should apply a well known heuristic known as
the “kernel trick,” where rather than estimating the feature map ψ
from an infinite-dimensional function space, one chooses the ker-
nels kx and ky. The choice of kernels reflects our understanding
and prior knowledge of the data and what makes two samples x(ti)

and x(tj) similar (and similarly for y). The kernel trick here seems
necessary, since we do not know the observation function G. If we
were to reconstruct G, then we could have used ψ = G, φ = Id, and
H = R

D (see, e.g., Ref. 11). In our setting, however, recovering G
might be nearly impossible, since we have only a single output time
series y(t) and do not know the parameter vector ω∗.

We revisit (11) with the kernel trick in mind. The numera-
tor 〈9̄(ω), 8̄〉2

F is equal to Tr2(Cxy(ω)), where Cxy(ω) = 9̄(ω)8̄T is
the cross-covariance operator. This operator norm cannot be com-
puted, since we only choose the kernels kx and ky and not the feature

maps φ and ψ . Nonetheless, we can use the kernels kx and ky to esti-
mate Tr(CT

xyCxy) = ‖Cxy(ω)‖
2
F as a surrogate to Tr2(Cxy). The norm

‖Cxy(ω)‖
2
F is known as the Hilbert–Schmidt independence criterion

(HSIC), due to Gretton et al.32,33 and can be estimated empirically
by Tr(Kx(ω)HKyH). We, therefore, use the HSIC(ω) to define the
following realizable proxy of objective (8):

ω̂ = arg max
ω∈�

HSIC(ω)

‖9̄(ω)‖2
F · ‖8̄‖2

F

= arg max
ω∈�

Tr(Kx(ω)HKyH)

‖Kx(ω)H‖2
F‖Ky(ω)H‖2

F

.

(12)

The HSIC is an indicator for the dependence of φ and ψ (or x
and y) as random variables. As y(t) is determined by x(t;ω∗) up to a
noise term, we expect that HSIC(ω∗) would express a high statistical
dependency. However, HSIC is also maximized as the covariance-
matrix of x (or of9 in the nonlinear settings) is maximized, regard-
less of Cxy. We, therefore, normalize the HSIC estimator by the

norm of the standard deviation matrix ‖
(

9̄(ω)9̄(ω)T
)1/2

‖2
F. This

latter matrix is estimated in the nonlinear Hilbert space settings by
‖Kx(ω)‖2

F, which leads to the right-hand side of (12). The empirical
estimator of HSIC in the nominator on the right side is known to
have a bias of O(1/N).32

Different perspective: The estimator ωml in (12) can also be
viewed in terms of kernel density estimators (KDEs). In Ref. 63, the
authors study non-rigid shape correspondence in three-dimensional
objects. Given N points xi and yi on two respective deformations
of the same shape, the goal is to find a permutation π on 1, . . .N
such that each yi corresponds to xπ(i) in the deformed shape. Let-
ting Kx(π) be the Gram matrix of the permutated xi’s, the term
Tr(Kx(π)Ky) can be understood as the KDE estimator of the joint
probability of the points under the permutation π . Indeed, in these
settings, the maximum likelihood estimator of π among all permu-
tations maximizes Tr(Kx(π)Ky), much as in Sec. III of this paper.
Note that since the parameter estimated in Ref. 63 is a permuta-
tion, ‖Kx(π)‖2

F is constant (independent of π) and, therefore, the
normalization is not needed.

In Ref. 47, the authors use the kernel trick to solve the nonpara-
metric CCA problem, i.e., identify nonlinear mappingsψ and φ that
maximize the correlation between ψ(x) and φ(y) [as in the numer-
ator of (8a)]. They show that the solution can be expressed using
the singular values of the joint probability density of X and Y, and
use kernels to estimate this joint density in a nonparametric fash-
ion. In the context of our problem, this solution can be used after
ω∗ is estimated for comparing the trajectories in a low-dimensional
representation.

IV. PROPOSED METHOD

A. Exhaustive search approach

In light of the analysis of Sec. III, our first proposed
method, Algorithm 1, is a straightforward numerical applica-
tion of (12). Assume for simplicity that � is a box in R

m, i.e.,
� =

∏

i=1,...,m[ai, bi], where bi > ai for all i = 1, . . . , m. We define
the Gram matrices for x and y by

K
y
i,j := exp

(

−
‖y(ti)− y(tj)‖

2
2

εy

)

, εy > 0. (13)
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Algorithm 1. Kernel search-based method for estimating ω∗

Given {y(tn)}n=1,...,N.
1. Compute the y kernel (13).
2. Choose�search ⊂ � to be a finite Cartesian grid in� ⊆ R

n.
3. for each ω ∈ �search do
4. Solve (1) for x(t;ω).
5. Compute the x kernel (14).
6. Compute the score s(ω) [see (15)].
7. end for
8. return ω̂ = arg max

ω∈�search

s(ω).

Kx
i,j(ω) := exp

(

−
‖x(ti;ω)− x(tj;ω)‖

2
2

εx

)

, εx > 0. (14)

Then, following (12), we propose the score

s(ω) =
Tr(Kx(ω)HKyH)

‖Kx(ω)H‖F · ‖KyH‖F

, (15)

where Hij = δij − N−1, in which Algorithm 1 maximizes on a pre-
determined set of grid points in�search ⊂ �.

As noted in Sec. III B, since we do not know the feature maps
φ and ψ , one needs to choose the kernel kx and ky (or their Gram
matrices Kx and Ky) to use (12). There are many possible choices
of kernels, which reflect different notions of affinities between sam-
ples of x(t) (and of y), many of which might have worked well for
estimating ω∗ (see, e.g., Ref. 36). In this work, we choose the widely
popular Gaussian kernel kx(x(ti), x(tj)) = exp(−‖x(ti)− x(tj)‖

2/εx)

(and, respectively, for y), for two main reasons: first, the Gaus-
sian kernel is translation invariant, i.e., kx(x, x′) = k(x − x′), which
ensures we capture only relative changes in the data, and not abso-
lute values. Second, the exponential decay of the Gaussian kernel
attenuates the effect of large distances. For the model coordinates
x(t), this makes intuitive sense because the governing ODE (1) is
local. For the observation coordinates, attenuating large distances
counteracts the spuriously large pairwise distances that tend to
appear in `2(RD) for D � 1 (see, e.g., Refs. 19 and 35). Finally, the
Gaussian kernel has expressivity properties that ensure its ability to
capture polynomial-order nonlinear dependencies between differ-
ent times, but it is by no means the only possible choice. For detailed
analysis and alternative kernel choices (see Ref. 59, and the refer-
ences therein). A key takeaway from this work is that even though
other tailored kernels can be designed for better performance, the
standard choice of the Gaussian kernel yields good results in our
numerical experiments.

The effectiveness of Gaussian kernels strongly relies on proper
tuning of the kernels’ bandwidths εx and εy. These parameters
directly affect the feature maps induced by the kernels. At one
extreme, setting εx or εy too large would result in kernels that
approach the all-ones matrices, i.e., where all samples are equally
affine. At the other extreme, as εx → 0 (respectively, εy), the kernel
K approaches the identity matrix, i.e., all affinities between different
samples are neglected. Here, we use a max–min measure suggested

in Ref. 39, where the scale is set to

εy = max
j

[min
i,i 6=j

(||y(ti)− y(tj)||
2)], i, j = 1, . . . , N, (16)

and analogously for εx. The max–min approach guarantees that for
each data point, K expresses a non-negligible affinity with at least
one other point. Moreover, this scheme generates kernels Kx and Ky

that are invariant to scaling in the ambient observation space R
D.

Several other methods have been proposed for tuning ε and can cer-
tainly be used (see, for example, Refs. 39, 71, 43, and 58). The third
tunable parameter in Algorithm 1 is the grid size |�search|. The choice
of a predetermined grid�search affects Algorithm 1 in two ways:

(1) Accuracy: For any estimator ω̂ ofω∗, define the estimation error

Err ωj =
‖ω̂j − ω∗

j ‖2

ω∗
j

, j = 1, . . . , m. (17)

Generally in Algorithm 1, the grid does not necessarily include
ω∗, i.e., ω∗ 6∈ �search, and so ω̂ 6= ω∗. Therefore, even in the best
case scenario where Algorithm 1 returns the closest grid point
to ω∗, the error is typically bounded from below in terms of1ω.
This error estimation applies also to the case of a single parame-
ter, as the average estimation error (17) over many experiments
scales like1ω, where

1ω := min{|ωi − ωj| s.t. ωi,ωj ∈ �search, i 6= j}

is the spacing of the grid. To see that, suppose for simplicity that
� = [0,1ω] and thatω∗ is drawn uniformly at random from�,
i.e., the probability density function of ω∗ = y is p(y) = 1ω−1.
Then, by partitioning � to two halves, one closer to the grid
point ω = 0 and the other to the grid point ω = 1ω, we have
that

Eω∗dist(ω∗, grid)

=
1

1ω

(∫ 1ω/2

0

ω∗ dω∗ +

∫ 1ω

1ω/2

(1ω − ω∗) dω∗

)

=
1ω

4
.

A similar estimate holds for any dimension m ≥ 1 of�.
(2) Efficiency: In the multi-dimensional case � ⊆ R

m, fine grids
are computationally prohibitive since their size scales exponen-
tially with m. Large grids are especially an issue when either (i)
solving the underlying dynamical system (1) is computationally
expensive, or (ii) the length of the time series N is large. In the
latter case, the computation of kernel (14), which requires eval-
uating all pairwise distances, requires O(N2) operations. The
cost of the kernel computation can be reduced using methods
such as k-sparse graph,66 which enjoys a reduced complexity of
O(N log N + Nk), where k is the number of nearest neighbors
used for building the graph.

B. Optimization approach

To overcome both of the accuracy and the efficiency problems
of Algorithm 1, we would like to replace the exhaustive grid search
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Algorithm 2. Kernel optimization-based method for estimating ω∗

Given {y(tn)}n=1,...,N.
1. Compute the kernel for y (13).
2. Choose�init ⊂ � at random.
3. for each ωj ∈ �init do
4. Solve the optimization problem (18) to find ω̂j using interior

point optimization initialized at ωj, where the kernel Kx(ω) is
given by (14) and x(t;ω) are the solutions of (1).

5. end for
6. return ω̂ = arg max

j
s(ω̂j).

with an optimization scheme to solve the following problem:

maximizes (ω) =
Tr(Kx(ω)HKyH)

‖KxH(ω)‖F · ‖KyH‖F

,

overω ∈ R
m,

subject to R(ω) ≤ 0,

(18)

where R can be chosen to be any function such that R(ω) ≤ 0 if and
only if ω ∈ �.76 Critically, optimization problem (18) is in general
non-convex. This is an inherent feature of our problem and should
not depend on the specific solution strategy. Indeed, let s̃(ω) be any
convex cost function for which ω∗ = arg max s̃(ω). Since s̃ depends
on ω indirectly through f(x;ω) [see (1)] and since there is no unique
way to express the dependence of f on its parameters, one can find an
equivalent parameterization of the ODE (1) such that the resulting
s̃(ω) is no longer convex. Therefore, the standard form of our ODE
of interest need not result in a convex parameterization of s̃(ω). We
note that this non-convexity property is already true for the linear
model (6).

To solve the constrained, nonlinear and non-convex problem
(18), our proposed method, Algorithm 2, has “two layers” of opti-
mization. At the heart of Algorithm 2, we use the interior point
algorithm (IPA), a solver for nonlinear constrained optimization
problems,16,17 as the optimization scheme in Step 4 of Algorithm 2.77

The IPA method first takes a Newton step by attempting to solve a
linear approximation of the problem (18), then, a gradient step is
performed using a trust region.65 Since the problem is not convex,
we repeatedly initialize the IPA method at random points�init ⊂ �,
and then chooses the optimal result over all iterations. In our expe-
rience, the multiple initialization mechanism improves our chances
of finding the global maximum (see experimental results in Sec. V).

Since the IPA routine in Algorithm 2 dynamically samples
ω ∈ � values, the overall number of samples does not scale expo-
nentially with the dimension, and the accuracy is not limited by
the grid spacing. Algorithm 2 is, therefore, computationally cheaper
than Algorithm 1. The key parameter in comparing the two is the
number of times the ODE (1) is solved and Kx (14) is computed. In
Algorithm 1, this is exactly the grid size |�search|. In Algorithm 2,
the number of evaluations of x(t;ω) is the number of optimiza-
tion initializations |�init| multiplied by the number of iterations
in each optimization process. In the examples considered in this
study, |�init| was kept orders of magnitude smaller than the |�search|

without much loss of accuracy, and the number of iterations in
each optimization process is usually below 20 (see, e.g., Fig. 6).
Algorithm 2, therefore, suggests an avenue to solve (18) efficiently
and accurately even as the dimension m of the parameter space �
increases.

Remark 4. Another practical implementation aspect of Algorithms 1
and 2 is the numerical solution method of the ODE (1). Throughout
this paper, we used the standard fourth-order Runge–Kutta method.37

Other numerical methods for ODEs can be used (see Ref. 38 for a more
thorough discussion).

C. Degeneracies and identifiability

When is the problem of estimating ω∗ unsolvable? If x(t;ω)
= x(t;ω∗) for someω 6= ω∗, these two parameters are indistinguish-
able in terms of the resulting dynamics. Moreover, if G(x(t;ω))
= G(x(t;ω∗)), then the experiment/observation of the dynami-
cal system cannot distinguish between the parameters. These are
extreme cases for obstructions of identifiability and observability,
topics which have been studied in both the statistics and control lit-
erature (see, e.g., Refs. 48 and 64, and the references therein). System
(1) combined with the observation function (2) is said to be uniden-
tifiable if the problem of estimating ω∗ is not solvable, regardless of
the method of solution. In loose terms, such G then corresponds to
a flawed experiment which is not designed to estimate ω.

Even for an identifiable and observable system, the fact that the
observation function G is unknown limits our use of standard infer-
ence techniques. In what follows, we wish to discuss the limitation
of our method even for identifiable systems: suppose that neither x
nor G are degenerate (as functions of ω and x, respectively), but that
the Gaussian kernels in (13) and (14) are degenerate. To explore
the effect of these degeneracies, we will consider the case where G
is an `2(Rd → R

D) isometry and noiseless, i.e., ‖G(x1)− G(x2)‖2

= ‖x1 − x2‖2 for any x1, x2 ∈ R
d. This discussion highlights some

of the considerations that go into designing Kx and Ky.

Lemma 1. Let y(t) = G(t) where G is an `2(Rd → R
D) isometry.

Then,

s(ω∗) = 1 = max
ω∈�

s(ω).

The other ω ∈ � values where s(ω) = 1 are precisely those for which
x(ω) = Tx(ω∗) for some `2(R) isometry T.

See the proof in Appendix B. Intuitively, Lemma 1 implies that
while s(ω) is not uniquely maximized in this case, it is “reason-
ably degenerate,” in the sense that its only other maximizers [when
G(x) = x] are ω ∈ � for which the trajectory x(t;ω) is isometric
to x(t;ω∗). For example, if x is a scalar, it would mean that such
degeneracies are only translations and reflections.

This is a fundamental consideration in the kernel design—if
ω,ω∗ ∈ � manifest in isometric observations/trajectories, then one
cannot distinguish between them using the observations. The
assumption that underlies our choice of the `2 norm in kernel
(14) now becomes apparent—it expresses the kind of degeneracies
we wish to allow. Indeed, different choices of norms would yield
different equivalence classes of parameters in�.

Finally, we make a crucial note regarding our choice of the
Gaussian kernel. In the proof of Lemma 1 we show that, in ideal
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settings, s(ω) is maximized only when 1 = Kx(ω)− Kx(ω∗) = 0.
However, since kernel (14) is exponentially decaying with ‖xi − xj‖

2
2,

the entries 1ij are practically null for most far-away indices (times)
i and j. Hence, even local in time degeneracies is sufficient to cause
estimation error. As noted above, the choice of εx and εy determines
how “local” the respective kernels are.

V. EXPERIMENTAL RESULTS

To test Algorithms 1 and 2, we apply them to two classical
chaotic dynamical systems—the double pendulum and the Lorenz
system.

A. Double pendulum

The double pendulum consists of two pendulums, one attached
to the end of the other. The Lagrangian of this system is given by40

L =
1

2
(m1 + m2) l21θ̇

2
1 +

1

2
m2l

2
2θ̇

2
2 + m2l1l2θ̇1θ̇2 cos(θ1 − θ2),

where lj, mj, and θj(t) are the length, mass, and clock-wise angle
from the negative y direction of the jth pendulum, for j = 1, 2. From
this Lagrangian, a fourth-order system of Euler–Lagrange ODEs for
(θ1, θ2, θ̇1, θ̇2) can be derived (see, e.g., Ref. 56 and Appendix C).

The parameters of the system are ω = (m2, l1, l2), where we set
m1 = 1 since the motion of the double pendulum depends only on
the ratio m2/m1 (see Appendix C). We describe the dynamics of the
double pendulum using the Cartesian coordinates of the two bobs
x = (x1, y1, x2, y2) (with a slight abuse of notations). The dynam-
ics of the pendulum are observed through a synthetic video with a
frame rate of 1t = 0.01. Each frame embeds the model in a high-
dimensional space y(ti) ∈ R

D, where D = 171 × 217 = 37 107 is
the number of pixels in each frame (see Fig. 3).

To evaluate the proposed approach, we generate 20 instances
of a double pendulum with the parameters m2, l1, and l2 each drawn
iid from a uniform distribution in the interval [1, 10] and with initial
conditions randomly drawn independently from N (0, 0.5), where
N = 1000. We then generate from each instance a movie of total run
time T = N ·1t = 10. First, we apply Algorithm 1 to each movie

and search over 20 values of each parameter (where the initial con-
ditions are known), i.e., a search-grid of size |�search| = 203 = 8000
and1ω = 0.45. In Fig. 4, we see that the estimated parameters yield
pendulum trajectories nearly indistinguishable from the true ones
(Fig. 4). Overall, the median normalized parameter estimation error
(17) of Algorithm 1 is 7%, 8%, and 5% for m2, l1, and l2, respec-
tively. We repeat the same experiment for the optimization-based
Algorithm 2 with |�init| = 1000, where the overall median normal-
ized errors are 3.6%, 2.3%, and 2.4% for l1, l2, and m2, respectively
(see box plots in Fig. 5). In this experiment, as well as in the Lorenz
system (Sec. V C), we assume that the initial conditions are known.
This is a realistic assumption if the experiment is controlled by the
observer, or if the initial conditions can be estimated independently.
If the initial conditions are not known, one option is to estimate
them as additional parameters using Algorithm 1 or 2.

To provide baselines for the proposed algorithms, we use two
linear variants of Algorithm 1. Both variants are based on the same
grid search procedure as in Algorithm 1 but using a different score.
The score for the first linear estimator (Linear 1) is defined by

slin1(ω) =
‖X̄ȲT‖F

‖X̄‖F‖Ȳ‖F

, (19)

where X̄ and Ȳ are the centered versions of X and Y. For the second
linear estimator, we use Gram matrices instead of Gaussian kernels
for ky and kx, thus the score is defined by

slin2 (ω) =
Tr(Gx(ω)HGyH)

‖GxH(ω)‖F · ‖GyH‖F

, (20)

where Gx = XTX and Gy = YTY. As evident from the box plots of
Linear 1 and 2 (Fig. 5), the performance of the linear variants of
Algorithm 1 are inferior compared with their kernel-based counter-
parts. Specifically, the overall median error of Linear 1 is higher than
Algorithm 1 by a factor of 6.5. For Linear 2, this factor is 9.7.

Next, to demonstrate the efficacy of the optimization-based
Algorithm 2, we record the values attained by the IPA method
throughout its iterations. As can be seen in Fig. 6, most of the
IPA runs converge after 10 iterations, and all of them converge in

FIG. 3. Left: A frame of an artificial double pendulum video. Right: The chaotic trajectory (x2(t), y2(t)) of the bottom bob.
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FIG. 4. Application of Algorithms 1 to estimate the double pen-
dulum parameters ω = (l1, l2,m2). The horizontal and vertical
coordinates xi and yi of the two bobs (i = 1, 2) for the true param-
eter ω∗ (black) and using ω̂ when estimated using Algorithm 1
(dashed blue).

less than 30 iterations (results not shown). Some runs converge to
parameters with a relatively low score. Nevertheless, since we choose
the IPA run of the highest score, we find that the overall error of
Algorithm 2 is low.

In light of the discussion in Sec. IV C, it is worth asking whether
measuring the estimation error (17) is the right way to estimate one’s

performance in estimating a dynamical system’s parameters. Cer-
tainly, it might be that the problem is inherently ill-posed and that
ω∗ is non-identifiable if another parameter ω ∈ � produce observa-
tions similar to y(t). Along this reasoning, we propose another met-
ric to measure our performance, the prediction error. This metric
compares the normalized mean square error (MSE) of the predicted

FIG. 5. Application of Algorithms 1 and 2 to estimate the double pendulum parameters ω = (l1, l2,m2). Top: Box plots of normalized errors (17) of estimated parameters
l1, l2, and m2 for the double pendulum based on 20 test cases. Results base on Algorithm 1 (left) and Algorithm 2 (right). Bottom: Box plots of normalized errors for the linear
scores 1 and 2, (19) and (20), respectively. In all box plots, red lines represent the medians, the blue box represents the 25th and 75th quantiles, the black whiskers represent
±2.7 standard deviations, and any data point beyond this distance is considered as an outlier and marked by a red plus.
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FIG. 6. Ten runs of the IPA optimization method in Algorithm 2 for the case of the
double pendulum (see Sec. V A). The score (15) vs the optimization step. Here, the
initial parameters for the IPA are drawn uniformly at random from [0.9, 1.1] · ω∗.
The solid line indicates the best IPA run in terms of the score s(ω).

trajectory x(t; ω̂) from the true one x(t;ω∗),

∫ tf
t=0

‖x(τ ; ω̂)− x(τ ;ω∗)‖2
2 dτ

∫ tf
t=0

‖x(τ ; ω̂)‖2
2 dτ

. (21)

We evaluate the prediction error of Algorithms 1 and 2 by com-
paring the true pendulum trajectory to the estimated trajectory using
the same 20 synthetic videos used for the box plots in Fig. 5. The
results (see Fig. 7) demonstrate that the median prediction errors
for Algorithm 1 and 2 are 0.27% and 0.2%, respectively. Moreover,
both methods attain a prediction error smaller than 9% in all of the
simulations. In this experiment, the prediction error (21) is compa-
rable to the estimation error (17) squared, as could be expected from
their respective definitions.

B. Estimation error decreases with signal length

In many experiments, the overall run time Tf = N ·1t of the
experiment is a tunable parameter. How does Tf affect the estimation
error (17)? In particular, we want to test the intuition accord-
ing to which longer signals provide more information. For each
Tf = 1, 2, . . . , 10, we draw 100 samples of l1, l2, m2, each with the
uniform distribution on the set {1.5, 2, 2.5, . . . , 7}. To each set of
these parameters, we apply Algorithm 1 (see Sec. IV). The mean
estimation error (17) decays as a function of Tf (see Fig. 8). Further-
more, it is evident that the standard deviation generally decreases
with Tf, which reinforces the intuition of more information in longer
signals.

We remark, however, that we do not expect the accuracy
to increase with Tf for all dynamical systems, especially not for
systems with attractors or limiting cycles. Consider for example
ẋ(t) = −x with x(0) = ω ∈ R+. Since x(t;ω) = ωe−t, then x(t;ω)
≈ 0 for t � 1 independently of ω. Since the kernels we use in Algo-
rithms 1 and 2 weight all times equally, the longer the signal is, the
more weight that is given to times t � 1, where ω∗ is practically
non-identifiable (see discussion in Sec. IV C).

FIG. 7. Box plots of normalized prediction error (21) for the double pendulum
experiment, as in Fig. 5, for Algorithms 1 and 2.

C. Lorenz’63 system

Consider the Lorenz (or Lorenz’6346) system of ODEs

ẋ1(t) = σ(x2 − x1),

ẋ2(t) = x1(ρ − x3)− x2,

ẋ3(t) = x1x2 − βx3,

(22)

where σ , ρ,β ∈ R
3
+ are the model parameters. The Lorenz system

is nonlinear, and for certain parameters and initial conditions, it is
chaotic [see Fig. 9(a)]. To embed this system in a high-dimensional

FIG. 8. Application of Algorithm 1 to the double pendulum systems with varying
total run time Tf (see Sec. V B). Mean normalized estimation error (17) for the
three parameters l1, l2, and m2 as a function of the total length Tf, with error-bars
of one standard deviation.
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space, we follow the nonlinear transformation introduced in Refs. 15
and 18. Let uj ∈ R

128 be the jth order Legendre polynomial evaluated
on 128 uniformly spaced points in [−1, 1], and let78

y(t) = G(x(t)) := u1x1(t)+ u2x2(t)+ u3x3(t)+ u4x1(t)
2

+ u5x2(t)
2 + u6x3(t)

2, (23)

where the ω notations were omitted for brevity [see Fig. 9(b)].
We apply Algorithm 2 to y(t) to estimate ω∗. Our algorithm’s
estimation of these parameters leads to nearly indistinguishable
low-dimensional trajectories x(t) [see Fig. 9(c)].

We then consider a noisy observation function

G(x(t); ζ ) = G(x(t)+ ζ ), (24)

where G is given by (23) and ζ ∼ N (0, σ 2I3) is three-dimensional
normally distributed with σ = 15. Note that in this case, the result-
ing noise in the observation is neither additive nor Gaussian.
The estimated parameters produce comparable trajectories [see
Fig. 9(d)].

To systematically study the performance of our proposed
approach, we repeat the following experiment 20 times: we set
β = 8/3, draw σ ∈ [15, 25] and ρ ∈ [40, 80], the initial conditions
x1(0), x2(0), and x3[0] from [0, 1], all uniformly at random. For each
set of parameters and initial conditions, we solve the Lorenz ODE
(22) and sample the solution with1t = 0.01 and Tf = N ·1t = 10,
where N = 1000. For each of these 20 instances we estimate the
parameters σ , and ρ using Algorithms 1 and 2. For Algorithm 1,
we use a grid with 50 values of each parameter, i.e., a search-grid
of size |�search| = 502 = 2500, with 1σ = 0.2 and 1ρ = 0.8. The

FIG. 9. (a) Lorenz system (22) with ρ = 60, σ = 20, and β = 8/3. (b) The observed y(t) [see (23)]. (c) The coordinates of x(t;ω∗) (solid, black) and its noisy variant
x(t;ω∗)+ ζ (grey) vs time for the true parameter. For each coordinate, we present the trajectory using the estimated parameters based on the clean signal ω̂c (dots, blue)
and noisy signal ω̂n (dashes, red).
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median normalized estimation error (17) of Algorithm 1 is 12% and
1.2% for σ and ρ, respectively. We repeat the same experiment for
the optimization-based Algorithm 2 with |�init| = 100, where the
overall median normalized errors are 7.5% and 1.6% for σ and ρ,
respectively (see box plots in Fig. 10). To provide a baseline, we fur-
ther evaluate the performance of an “Oracle” estimator. We define
the Oracle estimator as the linear maximum likelihood estimator
(4) when G is known. Using this estimator, we find the parame-
ter ω ∈ �search that minimizes the square difference between y and
G(x(ω)). The box plots of the oracle estimation appear in the right
side of Fig. 10, the median normalized errors are 6.4% and 0.3% for
σ and ρ, respectively. Next, we use Algorithm 2 to estimate all three
parameters of the Lorenz system σ , ρ, and β . To ensure observ-
ability, we use β = 8/3 and draw σ ∈ [15, 25] and ρ ∈ [40, 80], the
initial conditions x1(0), x2(0), and x3(0) from [0, 1], all uniformly
at random.79 We use |�init| = 100 (β is initialized by drawing from
[2, 3]), and obtain an overall median normalized of 7.4%, 5.3%, and
5.1% for σ , ρ and β , respectively (see bottom right box plots in
Fig. 10).

The accuracy of Algorithm 1 is limited by the grid resolution of
�search. The introduction of an optimization scheme in Algorithm 2
removes this limitation, but brings a host of other accuracy issues,

e.g., the non-convexity of the optimization problem (12). However,
practical considerations aside, what is the inherent accuracy of the
score (15), independently of the search or optimization method?
To answer this question, we repeated the test of Algorithm 1 on
the noiseless observation (23) of the Lorenz system (22), but when
only the parameter σ is unknown. This allows us to substantially
refine the grid and increase the size of�grid from 10 to 104. For each
grid-resolution, we average over 100 simulations and observe that
the median estimation error (17) decreases by more than an order
of magnitude (see Fig. 11). Whether this trend saturates at some
point, or conversely the error vanishes as |�grid| → ∞, remains an
interesting open question.

D. Model coordinates and phase space coordinates

The results above highlight an important distinction between
the model coordinates x(t;ω) and phase space coordinates. From a
dynamical systems perspective, it might seem as if our model coordi-
nates x(t;ω) in the double pendulum example consist of only partial
data—the double pendulum system (Appendix C) is a fourth-order
ODE, with two angles and two angular velocities, while we use only
the position coordinates. Therefore, our model coordinates x(t;ω)

FIG. 10. Box plots of normalized errors (17) for estimated parameters σ and ρ for the Lorenz’63 model (22) given by the observation function (23). Top left: Algorithm 1.
Top right: Algorithm 2. Red lines represent the medians and whisker bars indicate the 25th and 75th quantiles. Bottom left: Oracle estimator using the unknown observation
function G. Bottom right: estimation of three parameters using Algorithm 2.
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FIG. 11. Estimating σ in the Lorenz equation (22) from the observations (23)
where all other parameters are fixed and known. Parameter estimation error (17)
vs number of grid points |�grid| (see Algorithm 1).

do not specify a single point in phase space. The key observation here
is that we observe a time series, and not a single point in time. We
claim that temporal derivatives are implied by the time series. This
can be understood heuristically, as the differences between subse-
quent times are indicative of the velocities. In the spirit of Taken’s
theorem, delay coordinates (x(t1;ω), . . . , x(tn;ω)) can reconstruct
the phase space, especially in this instance where we only “drop” two
coordinates (see, e.g., Ref. 26).

To test the hypothesis that time series of partially observed
data can be sufficient for parameter estimation purposes, we applied
Algorithm 2 for the case where only two out of the three coordinates
of the Lorenz model (22) are available; we use the following partial
observation function:

ypartial(t) = G(x(t)) := u1x1(t)+ u2x2(t)+ u4x1(t)
2 + u4x2(t)

2,
(25)

where x1(t) and x2(t) are coordinates of the Lorenz’63 system (22)
and ui ∈ R

128 be the ith Legendre polynomial. Next, we simulate 20
trajectories based on the same scheme described in Sec. V C. In this
experiment, since ypartial(t) only depends on x1(t) and x2(t), we only
used these two coordinates to generate the kernel Kx [see (14)]. We
apply Algorithm 2 with |�init| = 100, and obtain an overall median
normalized of 10.65% and 0.74% for σ and ρ, respectively (see box
plots in Fig. 12). This is evidence that a time series of partially
observed data is sufficient to estimate the underlying parameters.

VI. DISCUSSION

A. Relevant literature—Learning and dynamics

In what follows, we discuss the relation between the main prob-
lem of this paper (parameter estimation with an unknown obser-
vation function) to notable questions at the interface of dynamical
systems, statistics, and machine learning.

FIG. 12. Box plots of the normalized errors (17) for estimating σ and ρ in the
Lorenz system (22) based on the partial observations function ypartial [see (25)].

This study is related to the fast-growing field of model
discovery and machine learning of physical systems in
general.4,8,10,12,15,18,23,25,69 Generally (notwithstanding their many dif-
ferences), these works aim to discover governing equations from
data using various machine learning techniques. There are three fea-
tures that distinguish our study from model discovery studies. First,
our approach and settings are not agnostic to the physical modeling,
and this study does not aim at “physics discovery.”4,15 Rather, we use
the laws of physics and known models to estimate the parameters.
The second distinction is that the unknown/unspecified portion of
our settings is the correspondence between the model and the obser-
vations [denoted by G; see (2)], which in model discovery studies is
usually assumed to be known.

The third distinction between this study and machine learning
problems in general is that we do not have ample training data, i.e.,
many pairs of a parameter ω and the resulting observation y(t). Nor
do we even observe many different signals y(t), which correspond
to different (unknown) parameters ω (as in, e.g., Ref. 45). Critically,
even though one can generate many trajectories x(t;ω) by solving
the underlying ODE, our data include only a single experiment with
a single observed y(t).

Another increasingly popular application of machine learning
to dynamical systems is learning implicit propagation models. By
observing many instances of a system’s evolution, one learns the
time-evolution or Koopman operator to propagate the observations
in time without learning an underlying ODE or partial differential
equation (PDE), either in a model-free fashion,27,51,68 or using partial
knowledge of the underlying system.2,5,67,70 In this study, propagating
the observations y(t) (e.g., a video) in time does not seem to advance
the estimation of the system’s parameters ω∗.

Our problem can be considered as a novel variant of standard
inverse problems.3,61 Broadly speaking, in these problems, a known
forward (perhaps noisy) map ω 7→ y(t) = G(x(t;ω); ζ ) is inverted
in some sense to recover x or ω∗. This is typically done using the
observations y and some a priori knowledge on the model. The key
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difference between standard inverse problems and this study is that
G in our case is completely unknown, and we do not attempt to
recover it. A particularly relevant type of inverse problems is that
where G is only known approximately, due to, e.g., modeling errors
or numerical approximation.20,57

Also related to this study is the general problem of nonlin-
ear dimensionality reduction and manifold learning. Since y = G(x)
(suppressing noise), {y(t;ω) | t ≥ 0, ω ∈ �} can be viewed as a
m + 1 dimensional manifold in the ambient space R

D. Manifold
learning techniques can, therefore, be applied to recover this low-
dimensional structure.7,21,24,25,60,73 These techniques, however, do not
provide a straightforward way to compare the sub-manifold result-
ing from y(t) with the model coordinates x(t;ω). Even diffusion-
based techniques, which allow one to identify the modality of
x(t;ω∗) in the observation space42,44 do not lead directly to ways to
identify ω∗ from the full parameter space�. We consider diffusion-
based solutions of our problem an interesting direction of future
studies.

B. Future works

In this work, we presented two examples (the double pendu-
lum and the Lorenz’63 system), where the number of estimated
parameters is relatively small. As in other inverse problems, many
issues might arise from considering a high-dimensional parame-
ter, e.g., identifiability, computational efficiency, and convergence
of the optimization scheme. Adjusting and extending our scheme to
high-dimensional parameters is, therefore, an interesting remaining
challenge.

One class of potential applications is the deduction of homog-
enized constants from reduced models. Consider, for concreteness,
a Hamiltonian describing optical propagation of laser beams in a
waveguides array, or of a quantum-mechanical electron in two-
dimensional graphene. The dynamics of the corresponding system
can be approximately reduced to an effective Dirac equation, where
short-time dynamics and the micro-structure of the lattice are
homogenized to a single constant wave speed. It might be possi-
ble, using our method, to observe the full dynamics, and by indirect
comparison to the reduced model deduce the homogenized velocity
and other constants of the lattice such as topological charges. Even
though this problem involves complex PDEs, our proposal is to esti-
mate a low-dimensional parameter. This is only an example to a
broad class of homogenization schemes in optics, radio-frequency

arrays, fluid dynamics, and continuum mechanics. If successful,
such an approach could allow measurement from complex dynami-
cal systems by indirect and non-explicit comparison to cheaper and
simpler reduced models.

Another potential application of our method is predicting
hematoma expansion after intracerebral hemorrhage based on non-
contrast computed tomography (CT). Over the years, pathological
observations have led to the development of several parametric
models of the propagation of hemorrhage, e.g., Refs. 29, 13, and 14.
This is another case where low-dimensional parameters underlie
high-dimensional data and requires the ability to estimate the model
parameters of a dynamical system from noisy observations con-
sisting of only a single trajectory. Here, the parameter estimation
problem is to identify the dynamical regime. One can investigate
the ability of our method to estimate the model parameters from
a small number of CT scans from a single patient, thereby allowing
us to determine whether the hematoma is likely to expand, which
in turn necessitates a life-saving, yet risky medical intervention, or
whether the hematoma contracts and only monitoring is required.
We believe that there exists a large number of such applications
from the realm of medical data analysis and related fields, which can
benefit from the presented method.

The approach presented in this paper can be viewed as a gen-
eral scheme (see Fig. 2) of which Algorithms 1 and 2 are two effective
representatives. Our choice of Gaussian kernels in (14) and (13)
is judicious, standard, and effective, but might be improved. One
avenue for improvement would be considering kernels that take into
account the temporal progression of the samples, as in, e.g., Refs. 25
and 62. One of the main constraints in this paper is that we observe
only a single time series y(t). Suppose the problem is extended to
measure many such time series, either by altering ω∗ or by changing
the initial conditions, then an appropriate kernel might be learned
(see, e.g., Refs. 41, 22, and 50).
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APPENDIX A: DERIVATION OF (9)

We write here the details for 8̄ and Ky:

‖8̄‖2
F = Tr(8̄>8̄)

=

N
∑

j=1

〈8̄·,j, 8̄·,j〉

=

N
∑

j=1

〈φ(y(tj))−
1

N

N
∑

i=1

φ(y(ti)),φ(y(tj))−
1

N

N
∑

i′=1

φ(y(ti′))〉
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=

N
∑

j=1



〈φ(y(tj)),φ(y(tj))〉 −
2

N

∑

i

〈φ(y(tj)),φ(y(ti))〉 +
1

N2

∑

i,i′

〈φ(y(ti)),φ(y(ti′))〉





=

N
∑

j=1

〈φ(y(tj)),φ(y(tj))〉 −
2

N

∑

i,j

〈φ(y(tj)),φ(y(ti))〉 +
1

N2

∑

j,i,i′

〈φ(y(ti)),φ(y(ti′))〉

=

N
∑

j=1

〈φ(y(tj)),φ(y(tj))〉 −
2

N

∑

i,j

〈φ(y(tj)),φ(y(ti))〉 +
N

N2

∑

i,i′

〈φ(y(ti)),φ(y(ti′))〉

=

N
∑

j=1

ky(y(tj), y(tj))−
1

N

∑

i,`

ky(y(ti), y(t`))

= Tr(KyH), Hij = δij −
1

N
,

where we have used the fact that φ is real valued and, therefore, the
inner product is symmetric.

APPENDIX B: ROOF OF LEMMA 1

Since α · Tr(A) = Tr(αA) for every scalar α and square matrix
A, then

s(ω) = Tr

(

Kx(ω)H

‖Kx(ω)H‖F

KyH

‖KyH‖F

)

=

〈

Kx(ω)H

‖Kx(ω)H‖F

,
KyH

‖KyH‖F

〉

F

,

where, as before, 〈·, ·〉F is the Frobenius inner product. Hence, we
can restrict the analysis to the case of ‖KxH‖F = ‖KyH‖F = 1. We
first prove that

A = arg max
B∈Mn(R)
‖B‖F=1

〈A, B〉F

for any A ∈ Mn(R) with ‖A‖F = 1. Define1 := B − A. Then,

1 = ‖B‖2
F = ‖A‖2

F + 〈A,1〉F + 〈1, A〉F + ‖1‖2
F.

Since A and B are real, 〈A,1〉F = 〈1, A〉F and so 〈A,1〉F

= −‖1‖2
F/2. Therefore,

〈A, B〉F = 〈A, A〉F + 〈A,1〉F

= ‖A‖2
F −

1

2
‖1‖2

F

= 1 −
1

2
‖1‖2

F.

Therefore, the maximum of this expression is attained when
‖1‖F = 0, i.e., when1 = 0 and A = B.

In the case where A = KyH and B = Kx(ω)H, the two cen-
tered kernels are equal if and only if we have the pairwise equalities
‖yi(ω

∗)− yj(ω
∗)‖2 = ‖xi(ω)− xj(ω)‖2 for all times ti and tj. Since

G is an `2(Rd → R
d) isometry, this inequality occurs if and only

if ‖xi(ω
∗)− xj(ω

∗)‖2 = ‖xi(ω)− xj(ω)‖2 for all times ti and tj, i.e.,

where xi(ω) = Txi(ω
∗) for an `2(Rd) isometry.

APPENDIX C: EXPLICIT ODEs FOR THE DOUBLE

PENDULUM

For completeness, we include here the Euler–Lagrange ODEs
that govern the double pendulum system (see Ref. 56 for deriva-
tion and details). Denote by θ1 and θ2 the angles of the respective
pendulums from the negative y axis, then

d

dt
(Eθ) =

d

dt







θ1

θ2

θ3

θ4






=









θ3

θ4

g1(Eθ)

g1(Eθ)









,

where

g1(Eθ) =
g(sin θ2 cos1θ − µ sin θ1)− (l2θ̇2

2
+ l1θ̇1

2
cos1θ) sin1θ

l1(µ− cos2 1θ)
,

g2(Eθ) =
gµ(sin θ1 cos1θ − sin θ2)+ (µl1θ̇1

2
+ l2θ̇2

2
cos1θ) sin1θ

l2(µ− cos2 1θ)
,

and where

1θ = θ1 − θ2, µ = 1 +
m1

m2

.
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