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Isometric featuremapping is an established time-honored algorithm inmanifold learning and non-linear dimen-
sionality reduction. Its prominence can be attributed to the output of a coherent global low-dimensional repre-
sentation of data by preserving intrinsic distances. In order to enable an efficient and more applicable
isometric featuremapping, a diverse set of sophisticated advancements have been proposed to the original algo-
rithm to incorporate important factors like sparsity of computation, conformality, topological constraints and
spectral geometry. However, a significant shortcoming of most approaches is the dependence on large-scale
dense-spectral decompositions and the inability to generalize to points far away from the sampling of the man-
ifold.
In this paper, we explore an unsupervised deep learning approach for computing distance-preserving maps for
non-linear dimensionality reduction. We demonstrate that our framework is general enough to incorporate all
previous advancements and show a significantly improved local and non-local generalization of the isometric
mapping. Our approach involves training with only a few landmark points and avoids the need for population
of dense matrices as well as computing their spectral decomposition.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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1. Introduction

Multidimensional scaling (MDS) is a generic name for a family of
techniques that estimate a configuration of points in a target metric
space from the information about inter-point distances measured in
some other metric space. Large-scale MDS problems are often essential
in representation and visualization of high-dimensional data and there-
fore solving such problems efficiently is of key importance in many
problems involving non-linear dimensionality reduction. In a manifold
learning setup, the most prominent method to employ this distance
preserving approach is the Isomap algorithm where, the target space
is chosen to be euclidean and the input inter-point distances are the es-
timated geodesic distances computed over the nearest-neighbor graph
associated with the set of points. Therefore, this technique enables re-
covering a near isometric embedding of the high-dimensional data
points or achieving manifold flattening.

Distance preserving representations are of fundamental interest to
theproblemof non-linear dimensionality reduction andmanifold learn-
ing. They enable a coherent global representation of data by preserving
the metric structure of the data manifold. The preservation of intrinsic
distances renders such a representation dependent only on the
hnology, The Netherlands
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geometry of themanifold andnot on how it is embedded in the ambient
space, and hence makes the resulting representation meaningful.

In this paper, we use the computational infrastructure of neural net-
works to model maps that preserve geodesic distances on data mani-
folds. We revisit the classical framework of multidimensional scaling
to find a configuration of points that satisfy pairwise distance con-
straints. We show that instead of optimizing over the individual coordi-
nates of the points, we can optimize over the function that generates
these points by modeling this map as a neural network. This choice of
modeling the isometric map with a parametric network provides a
straightforward out-of-sample extension, which is a simple forward
pass of the network. We exploit efficient sampling techniques that pro-
gressively select landmark points on the manifold by maximizing the
spread of their pairwise geodesic distances. We demonstrate that a
small amount of these landmark points are sufficient to train a network
to generate faithful low-dimensional embeddings of manifolds. Fig. 1
provides a visualization of our proposed approach.

From another viewpoint, our method can be understood as a partic-
ular case of metric learning. Metric learning refers to the set of tech-
niques that learn features from data, where these features are trained
to adhere to some notion of predefined distance. The typical input to a
metric learning scheme are pairs of data-points and a label associated
with each pair, that encodes the expected distance relationship be-
tween them. This relationship can be expressed as a coarse binary
input (close and far) [1–3] or a tertiary input using triplets [4,5]. In either
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Learning to unfold a ribbon: A three dimensional Helical Ribbon (left) and its two dimensional embedding - a planar parallelogram (right) learned using a two-layer MLP. The
network was trained using estimated pairwise geodesic distances between only 100 points (marked in black) out of the total 8192 samples.
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case, the goal is to discover features for each data-point, such that the
expected distance relationship is preserved in the feature space. By
training with a large number of pairs/triplets, the metric learning
scheme is expected to converge to consistent features that characterize
the data in terms of these expected distance relationships.

In this paper, we explore the scenario when the expected distance
between pairs of points is known precisely (for example, the geodesic
distance). Therefore, our approach allows us to view the concept of gen-
eralization from a geometric viewpoint. Algorithms that exhibit poor
generalizationswill yield embeddings that show a clear visual depiction
of suboptimal flattening and can be objectively measured using the
stress function (Eq. 4).

We begin by providing a detailed review of manifold learning and
specifically, the MDS problem in high-dimensional data analysis in
Section 2 and focus on a elaborate discussion on the different interpola-
tion philosophies involved in sparse MDS regimes. In Section 3, we dis-
cuss our approach of modeling isometric maps with neural networks
(DIMAL: Deep Isometric MAnifold Learning) and describe the training
procedure. In Section 4 we qualitatively and quantitatively evaluate
existing MDS approaches with our formulation. Finally in Section 5,
we explore generalizations of our learned isometric mapping to prob-
lems involving non-trivial sampling and topology.

This paper extends the principle ideas proposed in [6] with essential
additional discussions and experiments of our deep isometric manifold
learning scheme. Specifically, we provide a detailed discussion on inter-
polationphilosophies involved in sparseMDS regimes in Section 2.3 and
show that our deep learning approach exhibits superior generalization
properties in challenging extrapolation scenarios. These attributes
stand out most significantly for the flattening of non-trivial manifolds:
those that have holes, boundaries and other non-trivial structures that
we additionally explore in Section 5.

2. Background

2.1. Manifold Learning

Manifold learning is the process of recovering a low-dimensional
representation from a possibly non-linear high-dimensional data. The
literature on manifold learning is dominated by spectral methods that
have a characteristic computational pattern. The first step involves the
computation of the k nearest neighbors of all N data points. Then, an
N × N square matrix is populated using some geometric principle
which characterizes the nature of the desired low-dimensional embed-
ding. The eigenvalue decomposition of thismatrix is then used to obtain
the low-dimensional representation of the manifold. Manifold learning
techniques such as Laplacian Eigenmaps [7], LLE [8], HLLE [9] and Diffu-
sion Maps [10] are considered to be local methods, since they are de-
signed to minimize some form of local distortion and hence result in
embeddings which preserve locality. Methods like Isomap [11–13] are
considered global because they enforce preserving all geodesic dis-
tances in the low-dimensional embedding. Local methods usually lead
to sparse matrix eigenvalue problems and hence are computationally
advantageous. However, global methods are more robust to noise and
achieve globally coherent embeddings, in contrast to the local methods
which can sometimes lead to excessively clustered results. All spectral
techniques are non-parametric in nature and hence do not characterize
the map that generates them. Therefore, the computational burden of
2

large spectral decompositions becomes a major drawback when the
number of data-points is large. Furthermore, out-of-sample extension
of the map is a computationally expensive task. [14,15] address this
issue by providing formulas for out-of-sample extensions to the spectral
algorithms. However, these interpolating formulations are computa-
tionally inefficient and exhibit poor non-local generalization of the
manifold [16].

Examining the ability of neural networks to represent data mani-
folds has received considerable interest in recent years and has been
studied frommultiple perspectives. [17–19] use neural networks specif-
ically for solving the out-of-sample extension problem for manifold
learning. However, their procedure involves training a network to fol-
low a pre-computed non-parametric embedding rather than adopting
an entirely unsupervised approach, thereby inheriting some of the defi-
ciencies of the non-parametric methods. Another notable approach is
based on themetric-learning arrangement of the Siamese configuration
[1–3] using a contrastive loss. The loss enforces positive pairs to have
similar outputs and negative pairs to have dissimilar outputs, cumula-
tively leading to a local optimum that preserves all pairwise relation-
ships. Similarly, autoencoder networks [20–23] are very prominent to
generate low-dimensional latent codes that characterize the manifold
structure of data by a dual loss combination of reconstruction and regu-
larization. However, most of these deep learning methods require con-
siderable training effort in terms of number of examples needed for
satisfactory embeddings.

In contrast to these existing approaches, our method attempts to
combine the advantages of both: traditional manifold learning as well
as more recent deep-learning models. Firstly, the pre-computation of
manifold distances allows for a sampling strategy to select landmark
points for training, thereby considerably reducing training effort. Sec-
ondly, we can incorporate various advancements made in manifold
based distance computation procedures to deal with non trivial mani-
folds having structures like holes, boundaries and also variable sampling
issues. Finally, the parametrization of themapwith a network allows for
improving generalization in contrast to this drawback in themore tradi-
tional non-parametric spectral schemes.

2.2. Multidimensional Scaling

Multidimensional scaling (MDS) is a classical algorithm for
obtaining the global picture of data using pairwise distances or dissim-
ilarities information. The core idea of MDS is to find an embedding con-
figurationX= [x1,x2,x3…xN], such that all pairwise distancesmeasured
in the embedded space (typically ‖xi − xj‖) are faithful to the given
distances Ds = [dij2] as much as possible. Therefore, the input to an
MDS algorithm is the distance matrix and the output is the embedding
configuration X that preserves these pairwise distances. In the context
of isometric manifold learning, the MDS framework is enabled by im-
puting pairwise geodesic distances and recovering a low-dimensional
embedding output such that pairwise Euclidean distances in this space
match the corresponding geodesic distances. Putting simply, this is the
action of flattening the manifold as shown in Fig. 1.

There are two prominent, yet different versions of MDS: Classical
Scaling and Least-Squares Scaling. Classical Scaling is based on the obser-
vation that the double centering of a pairwise squared distance matrix
gives an inner-product matrix which can be factored to obtain the de-

sired embedding. Therefore, if H ¼ I � 1
N 11

T is the centering matrix,
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classical scaling minimizes the strain of the embedding configuration
X and is computed conveniently using the eigen-decomposition of the
N × N matrix � 1

2HDsH:

X∗
CS ¼ arg min

X
‖XXT þ 1

2
HDsH‖2F ð1Þ

X∗
CS ¼ V

1
2, where � 1

2
HDsH ¼ VVT ð2Þ

At the other end, least squares scaling is based on minimizing the
misfits between the pairwise distances of X = [x1,x2,x3…xN] and
desired distances [dij] measured by the stress function

X∗
LS ¼ arg min

X
σ Xð Þ ð3Þ

σ Xð Þ ¼ ∑
i < j

wij ‖xi � xj‖ � dij
� �2 ð4Þ

Minimization of Eq. 4 is typically handled using gradient descent it-
erations with wij = 1 for all i, j.1 One particular case was introduced by
Leeuw et al. [25] under the name SMACOF (Scaling by Majorizing a
COmplicated Function). The algorithm is based on the following itera-
tive step:

Xkþ1 ¼ V þ 1
N
11T

� �y
B Xkð Þ Xk ð5Þ

where N × N matrices V = [vij] and B(Xk) = [bij] are given by:

vij ¼
−wij i≠ jX
k≠i

wik i ¼ j

0
@ and bij ¼

−wij
dij

‖xi−x j‖
i≠ j; xi≠xj

0 i≠ j; xi ¼ xj

−
X
k≠i

bik i ¼ j:

0
BBBBB@

ð6Þ

The iteration in Eq 5 guarantees a non-increasing stress, due to the
principle of majorization. For more details we refer the interested
reader to [25].

In practice, theMDS framework is enabled by estimating all pairwise
geodesic distances with a shortest path algorithm like Dijkstra's [26],
and choosing an MDS scaling algorithm to generate the low-
dimensional embeddings. Schwartz et al. [27,28] and the Isomap algo-
rithm [11] were the first to suggest populating the pairwise distance
matrix Ds using Dijkstra's algorithm. [29,30] first suggested the use of
consistent approximate of geodesics for the goal of flattening into 2D
and [31] employed the Fast Marching method for computing the
geodesic distances on 2D surfaces.

Historically, MDS was first developed in [32,33] who proposed the
purely Euclidean model (input distances were euclidian) of the MDS.
Later, non-metric versions of MDS were developed in [34,35] which fo-
cused on a generic dissimilarity information rather than plain inter-
point distances. In the pattern recognition literature, a version of least
squares scaling of Eq 3 is known as Sammon's non-linear mapping
(NLM) [36]. Sammon's NLM proposed a straightforward gradient de-
scent on a scaled stress function similar to Eq 4 for feature extraction
from data. Extensions to Sammon's non-linear mapping using artifical
neural networks (called SAMANN)was shown in [37,38] using plain eu-
clidean distances. More recently, [58] proposed metric estimation and
parametrization using neural networks, with an emphasis on the appli-
cation to indoor localization in ad-hoc sensor networks.
1 A case of a least squares scaling problem with non-trivial wij’s was introduced in [24]
and is discussed in Section 5.1

3

2.3. Sparse Multidimensional Scaling

One of themajor drawbacks of the plainMDS approach is its compu-
tational cost and the lack of a principled generalization framework for
unseen data. Theminimization of objectives 1 and 4 demand computing
geodesic distances between all pairs of points leading to an expensive
eigen-decomposition of a dense N × N matrix as in the case of classical
scaling. Similarly, each step of the SMACOF iteration 5 demands com-
puting pairwise Euclidean distances between all pairs of points.

Thismotivated various fastMDSalgorithms thatwere based on sam-
pling the manifold and computing the pairwise geodesic distances only
between these sampled pairs of points. The input to a sparse MDS algo-
rithm is a much smaller K × K matrix of distances with K ≪ N as com-
pared to the entire Ds ∈ ℝN×N matrix required in Eqs 2 and 5. The
embedding of the whole dataset is then extracted using different
interpolation philosophies.

For example, Aflalo et al. [39] use the spectral geometry of the man-
ifold using the Laplace Beltrami Operator (LBO) to interpolate the dis-
tances in a classical scaling framework. The eigenfunctions of the LBO
form an orthonormal basis and are infact proven to be optimal [40] for
representing smooth functions on manifolds. Moreover, from a compu-
tational standpoint, unlike the dense inter-geodesic distance matrix Ds,
the discrete Laplace Beltrami Operator is sparse and computing the low-
frequency eigenfunctions of the LBO is computationally tractable even
for large N.

For a given problem of N points, Let ∈ RN�p be the first p
eigenfunctions of the LBO (see Fig. 2), with typically p ≪ N. Spectral
MDS uses these eigenfunctions to approximate geodesic distance func-
tions as well as the final embedding X. Therefore the whole Ds ∈ ℝN×N

matrix is represented using a smaller α ∈ ℝp×p (spectral co-efficients)
that are implicitly computed using a much smaller input geodesic dis-
tance matrix DK ∈ ℝK×K(we refer the interested reader to [39] for the
complete formulation)

X≈Φβ
Ds≈ΦαΦT ð7Þ

The approximations of Eq. (7) using α ∈ℝp×p and β ∈ℝp×d (d≪ N is
the output dimension) are then used in the classical MDS framework of
Eq. (2). This leads to a reduced set of equations that solve for β which
approximates the final embedding X. Similar in spirit, Boyarski et al.
[41] propose to use a spectral interpolation for the SMACOF iterations
of Eq 5, minimizing the stress for only a subsampled configuration of
points and interpolating the rest using eigenvectors of the Laplace
Beltrami operator. Shamai et al. [42,43] developed a sparse MDS using
the Nystrom extension method. A similar approach is also adopted in
multigrid-MDS [44] and vector extrapolation [45].

Although the use of a secondary interpolation scheme provided a
speed up, these frameworks still lack the principledmeans to generalize
to unseen data. The Landmark Isomap method [15,46] proposed a for-
mula to compute the out-of-sample extension of MDS. This formula
was based on computing geodesic distances of the new samples to
existing landmarks to estimate their embedding without re-doing the
entire optimization for newdata. Specifically, the landmark isomap pro-
cedure is as follows. First, a classical scaling is performed for a smaller
matrix DK ∈ ℝK×K. Then define Ld ∈ ℝK×d as

Ld ¼

ffiffiffiffiffiffi
λ1

p
⋅ vT1ffiffiffiffiffiffi

λ2

p
⋅ vT2
⋮ffiffiffiffiffiffi

λd

p
⋅ vTd

2
66664

3
77775

T

ð8Þ

where {λ1,λ2…λd} and {v1,v2,…vd} are the d largest eigenvalues and
eigenvectors corresponding to the classical scaling of matrix DK as per



Fig. 2. SparseMultidimensional Scaling (a) First few non-trivial eigenfunctions of the Laplace Beltrami operator on a swiss roll manifold used for spectral interpolation [39,41]. (b) A swiss
roll manifold with sparse landmarks (in red). A sparse MDS algorithm outputs an embedding using a much smaller number of input distances associated with the sparse landmarks. (c)-
(d) output of two prominent sparse MDS algorithms: Spectral MDS [39] and Landmark MDS [12].
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Eq. (2). The low-dimensional embedding of any newpoint p denoted by
X(p) ∈ ℝd is given by

X pð Þ ¼ � 1
2
L#d δp � δμ

� � ð9Þ

where δp ∈ ℝK is the vector of squared geodesic distances of the point p
to the K landmarks, δμ ∈ ℝK is a vector where each element is the
average squared geodesic distance of that landmark to all other
landmarks, and Ld# is the pseudo-inverse of Ld. The Eqs. (8) and (9) are
equivalent to a kernel formulation of the out-of-sample extension for
MDS [14]:

X pð Þ ¼ ∑
i¼K

i¼1
X pið ÞK p, pið Þ ð10Þ

K p, pið Þ∝d2avg � d2 p, pið Þ ð11Þ

where davg is the average squared geodesic distance between the ith

landmark to the other K landmarks. d(p,pi) is the geodesic distance
between landmark pi and the point p. Therefore the landmark Isomap
requires an estimate of the geodesic distance between the out-of-
sample points to the landmarks in order to implement the formula of
Eq 9. This requirement is an inherent drawback of the method. For a
problem of N points and K landmarks, Landmark isomap demands a
computation of O KNð Þ distances in contrast to O K2

� �
(as in spectral

MDS). Also, in most practical scenarios, computing geodesic distances
for new points is intractable and inaccurate especially for non-local
points on the manifold.

To conclude this section, we reiterate that the problem of estimating
a near isometric embedding of data from the estimated distances be-
tween a sparse and subsampled set of points, can be interpreted as an
implicit interpolation/extrapolation problem. Methods like Spectral
4

MDS [39] and Landmark MDS [12] proposed solutions, that use addi-
tional information like spectral geometry (eigenfunctions of the LBO)
or additional geodesic distances. What we demonstrate in this paper
is that a neural network scheme for the same objective, outperformes

these previous methods with only O K2
� �

distances required for train-

ing and without the need for any external information such as spectral
geometry, nystrom projection matrices or out-of-sample geodesic dis-
tances. The superiority of our approach is most significant for challeng-
ing extrapolation scenarios which we demonstrate in Section 5. In the
next section we outline the procedure of our main contribution:
DIMAL: Deep Isometric MAnifold Learning.

3. Deep Isometric Maps

3.1. Training Configuration

We incorporate the ideas of least squares scaling into the computa-
tional infrastructure of the Siamese configuration as shown in Fig. 3. A
Siamese configuration comprises of two identical networks that process
two different inputs. The outputs are then combined in a loss that is typ-
ically a function of the distance between the output pairs. This configu-
ration has been extensively used for the purposes of metric learning,
descriptor learning, 3D shape correspondence etc. [1,2,47,59]. For
every pth pair of data-points, we estimate the geodesic distance using
a shortest path algorithm and train the network by minimizing the
network-parameterized stress function (see Fig. 3):

L Θð Þ ¼
X
p

‖ FΘ X pð Þ
1

� �
−FΘ X pð Þ

2

� �
‖−d pð Þ� �2

ð12Þ

The expectation here is that with a sufficient number of example
pairs, the network learns to model a map FΘ : ℝM→ℝm; m≪M ,



Fig. 3. Siamese configuration: Each arm of the siamese network models the map FΘ : ℝM→ℝm; m≪M. For each training pair (X1,X2) ∈ ℝM, the loss minimizes the squared difference
between the Euclidean distances of the low-dimensional embedding and the geodesic distance d.
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fromhigh to lowdimension, that preserves the distance. As explained in
Section 4.1, we can study exactly how many examples are needed to
learn this map to sufficient accuracy, by employing a sampling strategy
that sufficiently covers the entire manifold uniformly.

Algorithm 1. Farthest point sampling.
Fig. 4. Farthest point sampling: The farthest point sampling algorithm enables a sparse
sub-sampling of the manifold, [48]. The network is trained using the loss of Eq. (12) and
the embedding for the entire configuration is visualized.
3.2. Geodesic Farthest Point Sampling

The farthest point sampling strategy [48,49] (also referred to as the
MinMax strategy in [15]) is a method for picking landmarks amongst
the points of a discretely sampledmanifold such that under certain con-
ditions, these samples cover the manifold as uniformly as possible.
Starting from a random selection, the landmarks are chosen one at a
time such that each new selection from the unused samples has the
largest geodesic distance to the set of the selected sample points.
Fig. 4 provides a visualization of this sampling mechanism. We train
the network byminimizing the loss in Eq 12 by computing the pairwise
geodesic distances between K landmarks. Therefore, the pre-training

computational effort is limited to O K2
� �

distances. Given a dataset
5

with N samples, we can summarize the proposed DIMAL algorithm as
follows (see Algorithm 2). We first build a graph from the data using
an approximate nearest neighbor algorithm, and obtain the set of land-
marks and corresponding pairwise geodesic distances using farthest
point sampling (Algorithm 1). Then, we construct a dataset of all pairs
of landmarks and their corresponding geodesic distances. Using the Si-
amese configuration depicted in Fig. 3 we train the network parameters
minimizing theMDS loss of Eq 12. The low-dimensional embedding for
any high-dimensional datapoint is obtained with its forward pass
through the trained network, as shown in Fig. 4. If the cost of computing
one row of N × N geodesic distances (using different choices like
Dijkstra/Fast Marching etc.) is f, then the resulting time complexity is
O Kfð Þ.
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Algorithm 2. DIMAL: Deep Isometric MAnifold Learning.
Fig. 5. Exploring the variations in architecture and the number of landmarks: (a) (top row) Thr
Algorithm 1. (bottom row) The corresponding two dimensional DIMAL output (Algorithm 2) ge
8172 points as a function of number of landmarks. (c) Order of accuracy estimates of different

6

4. Experiments

The core idea behind our experiments is to train on the sub-sampled
landmarks and observe the effect on the entire set. Put in another way,

we train to preserve only
K

2

� �
¼ 1

2K K � 1ð Þ distances between the

landmarks and evaluate the stress of Eq 4 over all 12N N � 1ð Þ datapoints.
We perform three separate experiments using this evaluation method-
ology. First, in Section 4.1 we vary the number of landmarks K, and ob-
serve the overall stress as a function of the network architecture.
Second, in Sections 4.3 and 4.4, we compare DIMAL to existing sparse
MDS frameworks by imputing all the algorithms with the same land-
marks and same geodesic distances and evaluating the MDS outputs
using overall stress and also analyze the out-of-sample performance. Fi-
nally, in Section 5we extend ourmethod to challenging non-trivial con-
ditions like boundaries, holes and arbitrary topologies.

4.1. Numerical Experiments on 3D Point Clouds

Our first set of experiments is based on synthetic point-cloud mani-
folds, like S-curve (Fig. 5) and the Helical ribbon (Fig. 1). The architec-
ture of the network in Fig. 3 is chosen to be a multilayer perceptron
(MLP) with the PReLU

PReLU xð Þ ¼ max 0, xð Þ þ a min 0, xð Þ, ð13Þ
ee dimensional S-Curve manifold with varying number of landmark points obtained using
nerated by a 2-LayerMLPwith 70 hidden nodes per layer. (b) The logarithmof stress of all
architectural choices.
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as the non-linear activation function, where a is a learnable parameter.
The networks are trained for 1000 iterations using the ADAM optimizer
with constants (β1,β2)= (0.95,0.99) and a learning rate of 0.01.We run
each optimization 5 times with random initialization to ensure
convergence. All experiments were implemented in Python using the
PyTorch framework [50]. We used the scikit-learn machine learning li-
brary for the nearest-neighbor and scipy-sparse for Dijkstra's shortest
path algorithms.

Figs. 1, 4 and 5 show the results of our method on the Helical ribbon
and S-curve respectively with varying number of training samples (in
black) out of a total of 8172 data points. The number of landmarks dic-
tates the approximation quality of the low-dimensional embedding
generated by the network. Training with too few samples results in in-
adequate generalization which can be inferred from the corrugations of
the unfolded manifold embedding in the first two parts of Fig. 5(a). In-
creasing the number of landmarks improves the quality of the embed-
ding, as expected. We compute the stress function 4 of the entire
point configuration to measure the quality of the MDS fit. Fig. 5
(b) shows the decay in the stress as a function of the number of training
points (landmarks) in a two layer MLP.

4.1.1. Architecture Design
For 3D pointclouds like the Swiss roll (Fig. 4), Helical Ribbon (Fig. 1)

or the S-curve (Fig. 5(a)), the network architecture to map FΘ : ℝ3→ℝ2

is a standard feedforwardmultilayered perceptronwith the PReLU() ac-
tivation function as shown in Eq. (13). From the perspective of a simple
architecture design for our setup, the natural questions to ask are how
many landmarks? how many layers? and how many hidden nodes per
layer?

We analyze the performance of the architecture, by borrowing anal-
ogous evaluation methodologies from numerical methods for partial
differential equations. More specifically, given a numerical technique,
the accuracy of the solution depends on the resolution of the spatial
grid overwhich the solution is estimated. Therefore, numericalmethods
are ranked by an assessment of the order of accuracy their solutions ob-
serve [51]. This can be obtained by assuming that the relationship be-
tween the approximation error E and the resolution of the grid h is
given by

E ¼ C hP ð14Þ

where P is the order of accuracy of the technique and C is some constant.
Thus, for every spatial resolution h, the error of the numerical algorithm
E(h) is evaluated and log(E(h)) is plotted as a function of log(h) for the
specific algorithm. P is obtained by computing the slope of the line since,

log Eð Þ ¼ log Cð Þ þ P log hð Þ: ð15Þ

Weextend the same principle in order to evaluate network architec-
tures (in place of numerical algorithms) for estimating the quality of
isometric maps. We use the overall stress of Eq 4 as the error function
E in Eq 14.We assume that due to the 2-optimal property [48] of the far-
thest point strategy for a two dimensional manifold, the sampling is ap-
proximately uniform and hence h∝ 1ffiffiffi

K
p where K is the number of

landmarks. By varying the number of layers and the number of neurons
per layer, we associate an order of accuracy to each architecture using
Eq 15, by trainingwith a varying number of landmarks K and evaluating
the overall stress.

Fig. 5 shows the results of the described experiment. It shows that a
single layerMLPhas the capacity ofmodeling functions to thefirst order
of accuracy. Adding a layer increases the representation power by mov-
ing to a second order result. Adding more layers does not provide any
substantial gain arguably due to a larger likelihood of over-fitting as
seen in the considerably noisier estimates (in green). Therefore, a two
layer MLP with 70 hidden neurons per layer can be construed as a
7

good architecture for approximating the isometric map of the S-Curve
of Fig. 5(a) with 200 landmarks.

4.1.2. Robustness
In addition, we also experiment the robustness of different ap-

proaches to varying degrees of noise in the input distances in Fig. 6.
Our parametric approach to the isometric embedding by optimizing for
the function that generates the points instead of optmizing the points
themselves makes the resultant embedding more robust to noise in
the input.

4.2. Image Articulation Manifolds

Each point on a non-linear articulation manifold is a binary image
that is generated by the articulation of a few parameters. In [52] it is
shown that certain types of such manifolds are isometric to Euclidean
space, that is, the geodesic distance between any two sample points is
equal to the Euclidean distance between their articulation parameters.
Therefore, one can consider such manifolds to be the multidimensional
equivalents of the three dimensional Swiss-roll or S-curve. We con-
struct a horizon articulation manifold where each image contains two
distinct regions separated by a horizon which is modulated by a linear
combination of two fixed sinusoidal basis elements as depicted in
Fig. 7a.

Iα1;α2 u; vð Þ ¼ 1
v≤ψα1 ;α2

uð Þ
	 


ψα1 ;α2
uð Þ ¼ α1 sin ω1uð Þ þ α2 sin ω2uð Þ ð16Þ

Thus, each sample has an intrinsic dimensionality of two - the
articulation parameters (α1,α2) which govern how the sinusoids
representing the horizon are mixed. We sample the articulation
parameters from a 2D uniform distribution

α1,α2ð Þ∼U 0, 1½ � � 0, 1½ �ð Þ: ð17Þ

In the context of the main narrative of this paper, which is metric
preserving properties ofmanifolds, we find that such a dataset provides
an appropriate test-bed for evaluating metric preserving algorithms.
Since we are assured of isometry to Euclidean plane, we can objectively
measure the performance of an MDS flattening algorithm with the
stress function in Eq 4. Fig. 7b shows the comparison between DIMAL
and other prominent manifold learning algorithms. Except for DIMAL
and Isomap, all other methods exhibit some form of distortion indicat-
ing a suboptimal metric preservation.

4.3. Evaluation with Sparse MDS Algorithms

We compare DIMAL to existing state-of-the-art sparse MDS algo-
rithms and present the results in Fig. 8. We generate 5000 examples of
the articulation manifold of Fig. 7a with ω1 = 2 and ω2 = 4. DIMAL
was trained with a CNN comprising two convolution layers, each with
kernel sizes 12 and 9, number of kernels 15 and 2, respectively, along
with a stride of 3 and, followed by a fully-connected layer mapping
the image to a two-dimensional domain. We train the network for
500 iterations using the ADAM optimizer [53] with a learning rate
of 0.01 and parameters (β1,β2) = (0.95,0.99). Each algorithm has
been imputed with the same landmarks and the same corresponding
pairwise geodesic distances. For every K landmarks used, we use 1

2K
eigenvectors of the Laplace-Beltrami operator for the spectralMDSalgo-
rithms as suggested in [41].We observe that DIMAL for almost all values
of K performs visually and quantitatively better that other MDS algo-
rithms without using any external information.



Fig. 6. Stability of the isometric embedding to varying levels of noise. (a) A Swiss-Roll embedded in 3-D. (b) The geodesic distance estimates are corrupted with increasing levels of noise
and the outputs of different sparse MDS algorithms: L-MDS [12], S-MDS [39] and S-LSMDS [41] are visualized.
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4.4. Comparison with Landmark Isomap

We compare DIMAL to its direct non-parametric competitor:
Landmark-Isomap [15]. The main idea of Landmark-Isomap is to per-
form classical scaling on the inter-geodesic distance matrix of only the
landmarks and then to estimate the embeddings of the remaining
points using an interpolating formula. The formula uses the estimated
geodesic distances of each new point to the selected landmarks in
order to estimate its low dimensional embedding.

We generate a training horizon articulation dataset containing 5000
samples generated with parameters sampled from (α1,α2) ∼ U([0,0.75]
× [0,0.75]) and evaluate the outputs on test dataset also of 5000 samples
with parameters sampled from (α1,α2) ∼ U([0,1] × [0,1]), thereby
isolating a part of the manifold during training. As in Section 4.3, both
themethods are imputedwith the same set of landmarks for evaluation.

As depicted in Fig. 9, the output of Landmark-Isomap shows a clus-
tered result due to the lack of non-local data in the geodesic distance
calculations for the interpolation. In contrast, our neural network clearly
Fig. 7. (a)Visualizing a horizon articulation manifold: samples generated from the image articu

the magnitude
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2
1 þ α2

2

q
(b) Comparing metric preservation properties for different manifold

[8], LE [7], DrLim [3]. The proposed method shows maximum fidelity to the ground truth show

8

exhibits a better generalization property, even for parts of the manifold
that were isolated during training.

4.5. Comparison to Siamese metric learning

We test ourmethod on amore realistic dataset where the constraint
of being isometric to a low-dimensional Euclidean space is not necessar-
ily strict. We generate 1369 images obtained by smoothly varying the
azimuth and elevation of the camera that is imaging a 3D object. We
show in comparison, the visual results and associated training times of
DrLim [3] whichwas trained using the hinge-loss for the Siamese archi-
tecture of Fig. 3:

L Θð Þ ¼
X
p

λ pð Þ ‖FΘ X pð Þ
1

� �
−FΘ X pð Þ

2

� �
‖

þ 1−λ pð Þ
� �

max 0; μ−‖FΘ X pð Þ
1

� �
−FΘ X pð Þ

2

� �
‖

n o ð18Þ
lation manifold as per Eqs. (16) and (17) with ω1 = 2,ω2 = 7. The color is proportional to

learning algorithms on the image articulation manifold dataset. Isomap [11], HLLE [9], LLE

n in Figure (a).



Fig. 8. Comparisonwith sparseMDS algorithms: (a) Visual evaluation of the interpolation behavior of different sparseMDS frameworks. The rows are in increasing order of landmarks. The
titles denote the corresponding stress of that embedding. (b) Stress plots as a function of the number of landmarks K.

Fig. 9. Evaluation of out-of-sample extensions: Visualizing the non-local generalization properties of our method (top) and Landmark Isomap (bottom). Both algorithms were trained on
the same Landmarks (in red) sampled from only a part of the manifold.

Fig. 10. Camera pose manifold: Embedding results and training times for DrLim [3] and DIMAL. DIMAL shows a faithful result for a much smaller training time.
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DrLim requires a considerable training effort, requiring all possible
1369
2

� �
¼ 936396 pairs whereas DIMAL yields a comparable result

in a considerably smaller training time (geodesic distances between

only
600
2

� �
¼ 179700 pairs). We used the same architecture for

DIMAL and DrLim for generating the embedding in Fig. 10. DIMAL gen-
erates a comparable result with an order of magnitude smaller training
time.
5. Extensions

5.1. Topologically Constrained Deep Isometric Embedding

One of the drawbacks of using an all-distance preserving approach
along the lines of Eqs. (2) and (3) is that it behaves poorly for manifolds
with non-convex properties like holes and boundaries. See Fig. 11. The
presence of non-convex structures like holes in the manifold, would
mean that some of the estimated geodesic distances are not optimal in
a distance preserving regime. [24] proposed a topologically constrained
MDS scheme (henceforth called TCIE) which filters out potentially
problematic distances between distant feature points based on the
properties of the geodesics connecting those points and their relative
distance to the boundary of the feature manifold. Input distances are
first identified as being consistent or inconsistent (like z1 − z2 in
Fig. 11). Following this identification, the optimization enforcing
distance preservation is implemented only for the consistent
distances. The three main steps of the TCIE algorithm are (i) detection
of boundary points, (ii) detection of a set of consistent geodesics, (iii)
solution of a weighted MDS problem. See Algorithm 3.

Algorithm 3. Topologically constrained isometric embedding [24].

We implement the TCIE algorithm using our parametric deep learn-
ing approach. Instead of minimizing the loss in Eq. (12), we apply the
TCIE algorithm tofilter out inconsistent distances andminimize the net-
work loss:
10
L Θð Þ ¼ ∑
p
w pð Þ ‖ SΘ X pð Þ

1

� �
� SΘ X pð Þ

2

� �
‖ � d pð Þ� �2

ð19Þ

wherew(p)=1 if the pair is consistent andw(p)=0 otherwise as shown
in algorithm 3. Fig. 12 shows the results. The network learns to flatten
the manifold correctly, by filtering out the inconsistent distances high-
lighted in Algorithm 3 and [24].

The presence of non convexity's like holes in the isometric embed-
ding problem provides a means to develop interesting and non-trivial
out-of-sample extension scenarios for our deep learning approach. As
mentioned earlier, we train the network to preserve the consistent
inter-geodesic distances between a sparse set of landmarks as shown
in Fig. 11. Now, in a separate test-case scenario, we generate the 3D
points from within the hole, which was excluded from the entire train-
ing process.We then pass these points to the trained network and visu-
alize the output of the network for thesewithin-hole points. The results
in Fig. 12 show that given sufficient number of landmarks, the network
can learn to generalize the isometric map to challenging interpolating
and extrapolating circumstances.

5.2. Conformal Isometric Mapping

[11] proposed a solution to the conformal embedding problem by
linking it to the isometric embedding problem. A conformal map is lo-
cally isometric upto a scale factor. Therefore, in conformal isomap
(also called C-Isomap), the authors proposed to estimate the local
scale from the observed data and use it to re-scale the local metric of
the manifold. After local scale has been factored out, we proceed with
the regular isometric embedding problem using classical scaling to re-
cover the low-dimensional flattened embedding. Therefore C-Isomap
is essentially an application of the classical scaling algorithm applied
to a modified distance matrix which takes the conformal factor into ac-
count. A typical test case for this technique is the 3D conformal fishbowl
visualized in Fig. 13. The conformal fishbowl has a varying density along
the manifold that is sparse at the bottom and dense near the rim of the
bowl.

We extend our DIMAL framework to this scenario using the same
modified distances as proposed. To test the generalization abilities of
both algorithms, we trained on landmarks comprising from only 60%
of the height of the fishbowl and test on the flattening of the entire sam-
ple set. Fig. 13 demonstrates that DIMAL clearly provides a much better
extension than Landmark Isomap which is unable to generalize to non-
local points.

5.3. Parallel Transport Unfolding

[13] proposed a scheme to estimate distances on manifolds that are
more robust to arbitrary topologies and variable sampling. Specifically,
instead of using the Dijkstra's algorithm, geodesic distances of discrete
paths over the input pointset are evaluated through parallel transport
to offer robustness to poor sampling and arbitrary topology. This refine-
ment in geodesic distance computation is used in conjunction with the
classicalMDS optimization of Eq. (2), leading to a revised Isomap proce-
dure called Parallel transport Unfolding (PTU).

The advantages of this scheme can be best visualized on the petals
dataset reported in [13]. It comprises of points sampled from specific re-
gions on the unit sphere having a petal like structure as shown in Fig. 14.
Due to the non-trivial nature of the manifold, a vanilla isomap proce-
dure will not be able to flatten (or unfurl the petal) perfectly. However,
the use of modified geodesic distances, using parallel tranport allow for
a robust distance computation which achieves an accurate unfurling of
the petals, as demonstrated in the Reference embeddings of Fig. 14.

We implemented our method using the input distances from [13].
We trained our DIMAL framework from interpoint parallel transport dis-
tances for 100 landmarks of a 4-petal manifold and compare it to the



Fig. 12. Topologically Constrained Deep Isometric Embedding: (a) the 3D embedding of a manifold with a hole. The black markers denote the farthest-point samples. The network is
trained to minimize the inter-geodesic distance between these markers by excluding the inconsistent geodesic distances as mentioned in Algorithm 3. (b)-(d) Visualizing the MDS out-
puts of thenetwork and L-Isomapwith the ground truth. (f)-(h)Visualizing the output of thenetwork for out-of-samplepoints, chosen to be thosewithin thehole. The network generalizes
and extrapolates the map learned from (a) to non-local regions in (e).

Fig. 11. Example of a manifold (in this case a developable 2D surface embedded in 3D) with holes. Estimating the discrete geodesic path on the manifold would yield curves like z1 − z2.
Distances corresponding to paths like d(z1,z2)mustnot be preserved for optimal flattening. [24] provides a scheme to detect boundaries of holes (in red) and avoid using such inconsistent
geodesic distances. This is achieved by solving a weighted MDS problem by setting wz1, z2 = 0 in a least squares scaling framework (Eq. (3)).
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Fig. 13. (a) The Conformal Fishbowl dataset [12], shown with the training and test cases. The training is done on landmarks obtained from only 60% of the height of the fishbowl. (b) The
planar embeddings of Landmark Isomap and DIMAL.

Fig. 14.Unfurling petals: The Petals dataset from [13]. The interpoint distances between the landmark points (in black) generated during an initial training phasewere computed using the
method outlined in [13] using notions of parallel transport. We compare the outputs of the landmark isomap method [12] with DIMAL in two scenarios: training and test. The network
shows much improved generalization properties in an extrapolation setup, where it can unfurl petals that were not present during training. Both methods are shown the same 100 land-
mark points and their inter-point distances for computation.
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Landmark Isomap method using the same input. As shown in the first
row of Fig. 14, both the Landmark Isomap algorithm as well DIMAL
show good flattening of the training data, faithful to the ground-truth
reference.

In order to evaluate generalization of the flattening, we prepared a
separate, test-case comprising of points from an 8-petal manifold. We
then extrapolate the embeddings of this 8-petal manifold using the
landmarks of the 4-petal manifold with L-Isomap as well as our
DIMAL framework. We see that in significant contrast to the landmark
isomap scheme (whichwas also trainedwith the same input distances),
DIMAL showsmuchbetter unfurling of the petals, especially the ones lo-
cated in non-local regions in the test case.

6. Conclusion

In conclusion, we explored an unsupervised deep learning approach
to the isometric embedding problem and rediscovered the MDS proce-
dure using optimization with parametric neural networks. Our ap-
proach can be trained with a few landmarks, thereby circumventing
computationally intensive formulaic operations like spectral decompo-
sitions or out-of-sample geodesic distances. We integrate our approach
with a comprehensive list of existing Isomap regimes, and demonstrate
improved generalization properties as shown in the various tests that
validate the interpolation and extrapolation performance.
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