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ABSTRACT

We address a three-tier numerical framework based on nonlinear manifold learning for the forecasting of high-dimensional time series,
relaxing the “curse of dimensionality” related to the training phase of surrogate/machine learning models. At the first step, we embed the
high-dimensional time series into a reduced low-dimensional space using nonlinear manifold learning (local linear embedding and parsimo-
nious diffusion maps). Then, we construct reduced-order surrogate models on the manifold (here, for our illustrations, we used multivariate
autoregressive and Gaussian process regression models) to forecast the embedded dynamics. Finally, we solve the pre-image problem, thus lift-
ing the embedded time series back to the original high-dimensional space using radial basis function interpolation and geometric harmonics.
The proposed numerical data-driven scheme can also be applied as a reduced-order model procedure for the numerical solution/propagation
of the (transient) dynamics of partial differential equations (PDEs). We assess the performance of the proposed scheme via three different
families of problems: (a) the forecasting of synthetic time series generated by three simplistic linear and weakly nonlinear stochastic models
resembling electroencephalography signals, (b) the prediction/propagation of the solution profiles of a linear parabolic PDE and the Brusse-
lator model (a set of two nonlinear parabolic PDEs), and (c) the forecasting of a real-world data set containing daily time series of ten key
foreign exchange rates spanning the time period 3 September 2001–29 October 2020.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0094887

Forecasting is of utmost importance in a wide spectrum of fields
ranging from finance and macro-economics to geomechanics
and earthquake forecasting and from ecology and environmen-
tal engineering to neuroscience and epidemiology, to name just
a few. A key task is the construction of reduced-order surro-
gate models that are able to generalize well. However, for high-
dimensional time series, the “curse of dimensionality” is a stum-
bling block toward this aim. Here, we address a numerical scheme
to perform out-of-sample predictions by first embedding the
high-dimensional time series into a low-dimensional manifold,
then train reduced-order surrogate models, and finally solve the
pre-image problem to reconstruct the predictions in the ambient

space. The efficiency of the proposed approach is demonstrated
using (a) synthetic stochastic time series resembling electroen-
cephalography (EEG) signals, (b) linear and nonlinear parabolic
PDEs, and (c) a real data set of a financial problem and, in
particular, that of a foreign exchange rate (FOREX) market.

I. INTRODUCTION

Forecasting methods include exponential smoothing and mov-
ing average models, ARIMA, Bayesian nonparametric models
including Gaussian processes and other machine learning schemes,
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such as forward and recurrent neural networks, deep learning,
LSTMs, reinforcement learning, reservoir computing, and fuzzy
systems.1–11 An inherent problem of using such data-driven mod-
eling/forecasting approaches, when dealing with temporal mea-
surements in a high-dimensional feature space, is the “curse of
dimensionality.”12 In such cases, training, i.e., the estimation of the
values of the model parameters, requires a large number of snap-
shots which increases exponentially with the dimension of the
feature space. Thus, a fundamental task in modeling and forecast-
ing is that of dimensionality reduction. Out of the many features
that can be measured in time, one has to first identify the intrin-
sic dimension of the possible low-dimensional subspace (mani-
fold) and the corresponding vectors that span it, which actually
parameterize the emergent/macroscopically observed dynamics of
the system under study. Assuming that the emergent dynamics
evolve on a smooth enough low-dimensional manifold, an arsenal
of linear, such as singular value decomposition (SVD) and dynamic
mode decomposition (DMD),13–15 and nonlinear, such as kernel-
PCA,16 locally linear embedding (LLE),17 ISOMAP,18,19 Laplacian
eigenmaps,20 diffusion maps (DMs),21–25 and Koopman operator,26–28

related manifold learning algorithms can be exploited toward this
direction.

For the twofold task of dimensionality reduction and mod-
eling in the low-dimensional subspace, Bollt29 used an ISOMAP
to approximate the manifold of dynamical systems in the form
of ODEs and PDEs and to construct reduced-order models. Chi-
avazzo et al.30 constructed reduced kinetics models by extracting
the slow dynamics on a manifold globally parameterized by trun-
cated DMs. A comparison of the reconstructed and the original
high-dimensional dynamics was also reported. The reconstruction
was achieved using radial basis functions (RBF) interpolation and
geometric harmonics.23 Liu et al.31 used DMs to identify coarse
variables that govern the emergent dynamics of a particle-based
model of animal swarming and based on these, they constructed
a reduced stochastic differential equation. Dsilva et al.32 used DMs
with a Mahalanobis distance to parameterize the slow manifold of
multiscale dynamical systems. Williams et al.27 addressed an exten-
sion of DMD to compute approximations of the leading eigenvalues,
eigenfunctions, and modes of the Koopman operator, thus showing
that for large data sets, the procedure converges to the numeri-
cal approximation one would obtain from a Galerkin method. The
performance of the method was tested via the unforced Duffing
equation and a stochastic differential equation with a double-well
potential that converges to a Fokker–Planck equation. Brunton
et al.33 used SVD to embed the dynamics of nonlinear systems in a
linear manifold spanned by a few modes and constructed state-space
linear models on the manifold to approximate the full dynam-
ics. The so-called sparse identification of the nonlinear dynamics
(SINDy) method was demonstrated using the Lorenz equations
and the 2D Navier–Stokes equations. Bhattacharjee and Matouš34

used ISOMAP to construct reduced-order models of heteroge-
neous hyperelastic materials in the 3D space, whose solutions are
obtained by finite elements, while for the construction of the inverse
map, they used RBF interpolation. Wand and Sapsis35 proposed
a methodology for forecasting and quantifying uncertainty in a
reduced-dimensionality space based on Gaussian process regres-
sion. The efficiency of the proposed approach was validated using

data series from the Lorenz 96 model, the Kuramoto–Sivashinsky,
as well as a barotropic climate model in the form of a PDE. Kutz
et al.36 proposed a scheme based on the Koopman-operator the-
ory to embed spatiotemporal dynamics of PDEs with the aid of
DMD for approximating the evolution of the high-dimensional
dynamics on the reduced manifold; the reconstruction of the states
of the original system was achieved by a linear transformation.
Chen and Ferguson37 have proposed a molecular enhanced sampling
method based on autoencoders38 to discover the low-dimensional
projection of molecular dynamics and then reconstructed back
the atomic coordinates. Vlachas et al.39 proposed an LSTM-based
method to predict the high-dimensional dynamics from the infor-
mation acquired in a low-dimensional space. The embedding space
is constructed based on the Takens embedding theorem.40 The
method is demonstrated through time series obtained from the
Lorenz 96 equations, the Kuramoto–Sivashinsky equation, and a
barotropic climate model as in Wand and Sapsis.35 Herzog et al.41

used a convolutional autoencoder and extended conditional random
fields for dimensionality reduction and prediction, respectively, for
dealing with chaotic spatiotemporal series. The method was demon-
strated via the Lorenz-96 system and the Kuramoto–Sivashinsky
PDEs. Lee et al.42 used DMs and automatic relevance determi-
nation to construct embedded PDEs by the aid of artificial neu-
ral networks (ANNs) and Gaussian processes. The methodology
was illustrated with the lattice-Boltzmann simulations of the 1D
FitzHugh–Nagumo model. Koronaki et al.43 used DMs to embed
the dynamics of a one-dimensional tubular reactor as modeled by
a system of two PDEs on a 2D manifold and then constructed
a feedforward ANN to learn the dynamics on the 2D manifold.
The efficiency of the scheme was compared with the original high-
dimensional PDE dynamics. Isensee et al.44 used PCA for dimen-
sionality reduction of spatiotemporal time series based on delay
embedding nearest neighbor methods in the low-dimensinal space
for prediction. The approach was demonstrated through noisy data
produced from a Barkley model the Bueno–Orovio–Cherry–Fenton
and the Kuramoto–Sivashinsky model. Recently, Lin and Lu45 used
the Koopman and the Mori–Zwanzig projection operator formal-
ism to construct reduced-order models for chaotic and randomly
forced dynamical systems, and then based on the Wiener projec-
tion, they derived nonlinear auto-regressive moving average with
exogenous input models. The approach was demonstrated through
the Kuramoto–Sivashinsky PDE and the viscous Burgers equation
with stochastic forcing.

The performance of most of the above schemes was assessed
in terms of interpolation; namely, the data were produced using
dynamical models (ODEs, PDEs, SDEs, or kinetic models) that were
simulated in some specific interval of the high-dimensional domain,
then reduced-order models were constructed and trained based
on the generated data, and finally, a reconstruction of the high-
dimensional dynamics was implemented within the original interval
of the high-dimensional domain.

In this work, we address a three-tier scheme to perform fore-
casting, i.e., out-of-sample extrapolation of high-dimensional time
series by (i) embedding the high-dimensional time series into a
low-dimensional manifold using nonlinear manifold learning, (ii)
constructing and training reduced-order surrogate models on the
low-dimensional manifold and, based on these, make predictions,
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and finally, (iii) solve the pre-image problem by lifting the
predictions in the high-dimensional space with geometric
harmonics23 or radial basis function (RBF) interpolation. The per-
formance of this “embed–forecast–lift” scheme is assessed through
three different families of problems: (a) the forecasting of three sim-
plistic synthetic time series resembling EEG recordings generated
by linear and weakly nonlinear discrete stochastic models, (b) the
prediction/propagation of the solutions of two parabolic PDEs (a
linear one and the Brusselator model giving rise to sustained oscil-
lations) based on past spatiotemporal data, and (c) the forecasting
of a real-world data set containing the time series of 10 key pairs of
foreign exchange prices retrieved from the www.investing.com open
API, spanning the period 3 September 2001–29 October 2020. For
our computations, we used two well-established nonlinear manifold
learning algorithms, namely, the LLE algorithm and DMs, two types
of surrogate models, namely multivariate autoregressive (MVAR)
and Gaussian process regression (GPR) models, and two methods
for solving the pre-image problem, namely, geometric harmonics
and radial basis function interpolation. We considered various com-
binations of the previous methods and compared them against the
naïve random walk and MVAR and GPR surrogate models imple-
mented directly in the original space. A comparison with the results
obtained with PCA for the cases of the numerical solution of the
parabolic PDEs and the FOREX forecasting problem is also pro-
vided. To the best of our knowledge, this is the first work that
addresses such a numerical framework for the solution of the prob-
lem of forecasting of high-dimensional time series based on non-
linear manifold learning, thus providing a comparison of various
embedding, modeling, and reconstruction approaches and assessing
their performance on synthetic time series, PDEs, and a real-world
FOREX data set.

II. METHODOLOGY AND PRELIMINARIES

Let us denote by xi ∈ R
D the vector containing the features

at the ith snapshot of the time series and by X ∈ R
D×N the matrix

having as columns the vectors spanning a time window of N obser-
vations. The assumption is that the time series/dynamics lie on a
“smooth enough” low-dimensional (say, of dimension d) manifold
that is embedded in the high-dimensional R

D space. Our aim is to
exploit manifold learning algorithms to forecast the time series in
the high-dimensional feature space. Thus, our purpose is to bypass
the “curse of dimensionality” associated with the training of surro-
gate models in the original input space and, with the limited size
that usually characterizes real-world data (such as financial data).
Toward this aim, we propose a numerical framework that consists
of three steps.

At the first step, we employ embedding algorithms (LLE and
DMs) to construct nonlinear maps from the high-dimensional input
space to a low-dimensional subspace that preserve as much as pos-
sible the intrinsic geometry of the manifold (i.e., maps assuring that
neighborhoods of points in the high-dimensional space are mapped
to neighborhoods of the same points in the low-dimensional man-
ifold, and the notion of distance between the points is maintained
as much as possible). In general, it is expected that the manifold
learning algorithms will provide an approximation to the intrin-
sic embedding dimension, which will differ from the “true” one.

This depends on the threshold that one puts for the selection of
the number of embedded vectors that span the low-dimensional
manifold. A central concept here is the Riemannian metric, which
defines the properties of this map. At the second step, based on the
resulting embedding features that span the low-dimensional man-
ifold, we train a class of surrogate models (MVAR and GPR) to
predict the evolution of the embedded time series on the manifold
based on their past values. The final step implements the solution
of the pre-image problem, i.e., a construction of a lifting operator.
The aim here is to form the inverse map from the out-of-sample
forecasted embedded points to the reconstruction of the features in
the high-dimensional input space. On one hand, the existence of
such an inverse map is theoretically guaranteed by the assumption
that a low-dimensional “sufficiently smooth” manifold exists. At this
point, we should note that the embedding generated using noisy data
may produce a distorted and, therefore, unreliable geometry (see,
e.g., the discussion in Gajamannage et al.46). On the other hand, the
data-driven derivation of the corresponding inverse map is neither
unique47 nor trivial as, for example, when using PCA. In general, one
generally has to solve a nonlinear least-squares problem requiring
the minimization of an objective function that can be formed using
different criteria for the properties of the neighborhood of points;
this results in different inverse maps whose performance has to be
validated numerically.

Next, and for the completeness and clarity of the presenta-
tion of the methodology, we briefly describe basic concepts of the
manifold theory.

Manifold learning techniques can be viewed as unsupervised
machine learning algorithms in the sense that they “learn” from the
available data a low-dimensional representation of the original high-
dimensional input space, thus providing an “optimal” (under certain
assumptions) embedded subspace where the information available
in the high-dimensional space is preserved as much as possible.
Here, we briefly present some basic elements of the theory of mani-
folds and manifold learning.47–50 Let us start with the definition of a
d-dimensional manifold.

Definition 1 (Manifold): A set M ⊂ R
n is called a

d-dimensional manifold (of class C∞) if for each point p ∈ M, there
is an open set W ⊂ M such that there exists a C∞ bijection f :
U → W, U ⊂ R

d open, with C∞ inverse f−1 : W → U (i.e., W is
C∞-diffeomorphic to U). The bijection f is called a local parameter-
ization of M, while f−1 is called a local coordinate mapping, and the
pair (W, f−1) is called a chart (or neighborhood) of p on M.

Thus, in a coordinate system (W, f−1), a point p ∈ W can be
expressed by the coordinates (f−1

1 , f−1
2 , . . . , f−1

n ), where f−1
i is the ith

element of f−1. A chart (W, f−1) is centered at p if and only if
f−1(p) = 0. Thus, we always assume that the manifold satisfies the
Hausdorff separation axiom, stating that every pair of distinct points
on M has disjoint open neighborhoods. Summarizing, a manifold
is a Hausdorff (Separated/T2) space, in which every point has a
neighborhood that is diffeomorphic to an open subset in R

d.
Definition 2 (Tangent space and tangent bundle to a

manifold): Let M ⊂ R
n be a manifold and p ∈ M. The tangent

space to M at p is the vector subspace TpM formed by the tangent
vectors at p defined by

TpM = Dfu(TuR
d), f(u) = p,
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where TuR
d is the tangent space at u and

Dfu(TuR
d) =

[

∂fi(u)

∂uj

]

=

















∂f1
∂u1

∂f1
∂u2

. . .
∂f1
∂ud

∂f2
∂u1

∂f2
∂u2

. . .
∂f2
∂ud

...
...

...
...

∂fn
∂u1

∂fn
∂u2

. . .
∂fn
∂ud

















,

with rank(Df) = d. Thus, S =
{

∂f

∂u1
, ∂f

∂u2
, . . . , ∂f

∂ud

}

is a basis for TpM.

The union of tangent spaces

TM = ∪p∈MTpM

is called the tangent bundle of M.
Definition 3 (Riemannian manifold and metric): A Riema-

nnian manifold is a manifold M endowed with a positive definite
inner product gp defined on the tangent space TpM at each point p.
The family of inner products gp is called a Riemannian metric, and
the Riemannian manifold is denoted by (M, g).

The above definitions refer to the case of continuum
limit—infinite number of points. However, for real data with a lim-
ited number of observations, one can only try to approximate the
manifold; the analytic charts of the Riemannian metric that actually
define the geometry of the manifold are simply not available. Thus,
a consistent manifold learning algorithm constructs in a numerical
way a map that approximates in a probabilistic way the continuous
one when the sample size N → ∞. Thus, a fundamental preprocess-
ing step of a class of manifold learning algorithms, such as Laplacian
maps, LLE, ISOMAP, and DMs, is the construction of a weighted
graph, say, G (X, E), where E denotes the set of weights between
points. This construction is based on a predefined metric (such as
the Gaussian kernel and the k-NN algorithm), which is used to
appropriately connect each point x ∈ R

D with all the others. This
defines a weighted graph of neighborhoods of points. Theoretically,
with an appropriate choice of the metric and its parameters, the
graph is guaranteed to be connected; i.e., there is a path between
every pair of points in X.47

For the completeness of the presentation, in Secs. III–V, we
briefly discuss the manifold learning algorithms, the regression
models, and the lifting techniques used in this work.

III. MANIFOLD LEARNING ALGORITHMS

A. Locally linear embedding (LLE)

The LLE algorithm51 is a nonlinear manifold learning
algorithm, which constructs G (X, E) based on the k-NN algorithm.
It is assumed that the neighborhood forms a basis for the recon-
struction of any point in the neighborhood itself. Thus, every point
is written as a linear combination of its neighbors. The weights of
all pairs are then estimated with least squares, minimizing the L2

norm of the difference between the points and their neighborhood-
based reconstruction. The same rationale is assumed for the low-
dimensional subspace, keeping the same estimates of the weights
in the high-dimensional space. In the low-dimensional subspace,
one now seeks for the coordinates of the points that minimize the
L2 norm of the difference between the coordinate of the points on

a d-dimensional manifold and the weighted neighborhood recon-
struction. The minimization problem is represented as an eigenvalue
problem, whose first d bottom non-zero eigenvectors provide an
ordered set of orthogonal coordinates that span the manifold. It
should be noted that in order to obtain a unique solution to the
minimization problem, the number of k nearest neighbors should
not exceed the dimension of the input space.51

The LLE algorithm can be summarized in the following three
basic steps.51

1. Identify the k nearest neighbors for all xi ∈ R
D, i = 1, 2, . . . , N

(with k ≥ d + 1). For each xi, this forms a set K{xi} ⊂ R
k×D

containing the k nearest neighbors of xi.
2. Write each xi in terms of K{xi} as

xi =
∑

j∈K{xi}
wijxj (1)

and find the matrix W = [wij] ∈ R
N×N of the unknown weights

by minimizing the objective function

L (W) =
N
∑

i=1

∥

∥

∥

∥

∥

∥

xi −
N
∑

j=1,j6=i

wijxj

∥

∥

∥

∥

∥

∥

2

L2

, (2)

with the constraint
N
∑

j=1

wij = 1. (3)

3. Embed the points xi ∈ R
D, i = 1, 2, . . . , N, into a low-

dimensional space with coordinates yi ∈ R
d, i = 1, 2, . . . , N,

d � D. This step in LLE is accomplished by computing the
vectors yi ∈ R

d that minimize the objective function,

φ(Y) =
N
∑

i=1

∥

∥

∥

∥

∥

∥

yi −
N
∑

j=1,j6=i

wijyj

∥

∥

∥

∥

∥

∥

2

L2

, (4)

where the weights wij are fixed at the values found by solving the
minimization problem (2). The embedding vectors are required
to be centered at the origin with an identity covariance matrix.51

The embedded vectors yi are constrained so that they have a zero
mean and a unit covariance matrix.

The cost function (4) is quadratic and can be stated as

φ(Y) =
N
∑

i=1

N
∑

j=1

qij〈yi, yj〉, (5)

involving the inner products of the embedding vectors and a sym-
metric square matrix Q with elements

qij = δij − wij − wji +
∑

k

wkiwkj, (6)

δij = 1 if i = j and 0 otherwise. In a matrix form, Q ∈ R
N×N can be

written as

Q = (I − W)T(I − W). (7)

In practice, this representation of Q gives rise to a significant reduc-
tion of the computational cost, especially when N is large, since left
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multiplication by Q can be performed as

Qv = (v − Wv)− WT(v − Wv), v ∈ R
N, (8)

requiring just two multiplications by the sparse matrices W and WT.
Minimizing the cost function (4) can be performed via the

eigenvalue decomposition of Q. Specifically, the eigenvector asso-
ciated with the smallest (zero) eigenvalue is the vector with all 1s,
and it trivially minimizes (4);51 it is disregarded because it leads
to a constant (degenerate) embedding. The optimal embedding is,
therefore, obtained by the d eigenvectors of Q, denoted as qk ∈ R

N,
k = 1, 2, . . . , d, corresponding to the next d smallest eigenvalues.
Thus, the coordinates of xi, i = 1, 2, . . . , N, in the embedded space
are given by the vector

R(xi) = yi = [qi1, qi2, . . . , qid]
T, (9)

where qij denotes the jth element of eigenvector qi.

B. Diffusion maps (DMs)

Here, the construction of the affinity matrix is based on the
computation of a random walk on the graph G (X, E). The first step is
to construct a graph using a kernel function, say, k(xi, xj). The kernel
function can be chosen as a Riemannian metric so that it is sym-
metric and positive definite. Standard kernels, such as the Gaussian
kernel, typically define a neighborhood of each point xi, i.e., a set of
points xj having strong connections with xi, namely, large values of
k(xi, xj).

At the next step, one constructs a Markovian transition matrix,
say, P, whose elements correspond to the probability of jumping
from one point to another in the high-dimensional space. This tran-
sition matrix defines a Markovian (i.e., memoryless) random walk
Xt by setting

pij = p(xi, xj) = Prob(Xt+1 = xj|Xt = xi).

For a graph constructed from a sample of finite size N, the
weighted degree of a point (node) is defined by

deg(xi) =
N
∑

j=1

k(xi, xj), (10)

and the volume of the graph is given by

vol(G ) =
N
∑

i=1

d(xi).

Then, the random walk on such a weighted graph can be defined by
the transition probabilities

pij = p(xi, xj) = k(xi, xj)

deg(xi)
. (11)

Clearly, from the above definition, we have that
∑N

j=1 p(xi, xj) = 1.

We note that in the continuum, the above can be described as
a continuous Markov process on a probability space (�, H , P),
where � is the sample space, H is a σ -algebra of events in �, and
P is a probability measure. Let µ be the density function of the
points in the sample space� induced from the probability measure,

µ : H → R with µ(�) = 1. Then, using the kernel function k, the
transition probability from a point x ∈ � to another point y ∈ � is
given by

p(x, y) = k(x, y)
∫

�
k(x, y)dµ(�)

, (12)

which is the continuous-space counterpart of (11).
The above procedure defines a row-stochastic transition

matrix, P = [pij], which encapsulates the information about the
neighborhoods of the points. Note that by raising P to the power
of t = 1, 2, . . . , we get the jumping probabilities in t steps. This way,
the underlying geometry is revealed through high or low transition
probabilities between the points, i.e., paths that follow the under-
lying geometry have a high probability of occurrence, while paths
away from the “true” embedded structure have a low probability.
Note that the t-step transition probabilities, say, pt(xi, xj), satisfy the
Chapman–Kolmogorov equation,

pt1+t2(xi, xj) =
∑

xk∈X

pt1(xi, xk)pt2(xk, xj). (13)

The Markov process defined by the probability matrix P has a
stationary distribution given by

π(xi) = deg(xi)
∑

xj∈X deg(xj)
, (14)

and it is reversible, i.e.,

π(xi)p(xi, xj) = π(xj)p(xj, xi), ∀xi, xi ∈ X. (15)

Furthermore, if the kernel is appropriately chosen so that the graph
is connected, then the Markov chain is ergodic and irreducible, and
its transition matrix has a stationary vector π such that

PTπ = KD−1π = KD−1d

1Td
= K1

1Td
= d

1Td
= π , (16)

where d is the degree vector whose ith entry is deg(xi) and 1 is an all
ones vector.

From the Perron–Frobenius theorem, we know that its geomet-
ric multiplicity is 1. It can be shown that all other eigenvalues have a
magnitude smaller than 1.22 From (11), we get

P = D−1K, D = diag





N
∑

j=1

kij



 , (17)

where kij = k(xi, xj). We note that the transition matrix P is similar
to the symmetric positive definite matrix S = D−1/2KD−1/2. Thus,
the transition matrix P has a decomposition given by

P =
N
∑

i=1

λiuiv
T
i , (18)

where λi ∈ R are the (positive) eigenvalues of P, ui ∈ R
N are the

left eigenvectors, and vi ∈ R
N are the right eigenvectors such that

〈ui, vj〉 = δij.
The set of right eigenvectors vi establishes an orthonormal basis

for the subspace R(PT) of R
D spanned by the rows of P. Row i repre-

sents the transition probabilities from point xi to all the other points
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of the graph. According to the Eckart–Young–Mirsky theorem,52,53

the best d-dimensional low-rank approximation of the row space of
P in the Euclidean space R

d is provided by its d right eigenvectors
corresponding to the d largest eigenvalues.

It has been shown that asymptotically, when the number of data
points uniformly sampled from a low dimensional manifold goes to
infinity, the matrix 1

σ
(I − P) (where σ is the kernel function scale)

approaches the Laplace–Beltrami operator of the underlying Rie-
mannian manifold.21,24 This allows one to consider the eigenvectors
corresponding to the largest few eigenvalues of P as discrete approx-
imations of the principal eigenfunctions of the Laplace–Beltrami
operator. Since the principal eigenfunctions of the Laplace–Beltrami
operator establish an accurate embedding of the manifold,54 this
result promotes the usage of the eigenvectors of P for practical
(discrete) data embedding.

At this point, the so-called diffusion distance, which is an affin-
ity distance related to the reachability between two points xi and xj,
is given by

D2
t (xi, xj) = ||pt(xi, ·)− pt(xj, ·)||2L2,1/deg

(19)

=
N
∑

k=1

(pt(xi, xk)− pt(xj, xk))
2

deg(xk)
, (20)

where pt(xi, ·) is the ith row of Pt. The embedding of the t-step tran-
sition probabilities is achieved by forming a family of maps (DMs)
of the N points xi ∈ X in the Euclidean subspace of R

d defined by

R t(xi) = yi =
[

λt
1v1(i), λ

t
2v2(i), . . . , λ

t
dvd(i)

]T
, i = 1, 2, . . . , N.

(21)
A useful property of DMs is that the Euclidean distance in the
embedded space ||R t(xi)− R t(xj)||L2 is the best d-dimensional
approximation of the diffusion distance, given by (20), where the
equality holds for d = N.

IV. FORECASTING WITH REGRESSION MODELS

Let us assume that the time series are being generated by a
(nonlinear) law of the form

yt = φ(z, µ)+ et, (22)

where yt ∈ R
d denotes the vector containing the measured values

of the response variables at time t, φ : R
p × R

q → R
d is a func-

tion encapsulating the law that governs the system dynamics, which
contains the parameters and exogenous variables represented by the
vectorµ ∈ R

q, z ∈ R
p is the vector containing the explanatory input

variables (predictors), which may include past values of the response
variables at certain times, say, t − 1, t − 2, . . . , t − m, and et is the
vector of the unobserved noise at time t.

In general, the forecasting problem (here in the low-
dimensional space) using regression models can be written as a
minimization problem of the following form:

argmin
g∈G, θ∈Rl

L (yt+k − g(z, θ)), (23)

where k is the prediction horizon, g : R
p × R

l → R
d is the regres-

sion model,

ŷt+k = g(z, θ), (24)

with parameters θ ∈ R
l, G is the space of available models g, ŷt is

the output of the model at time t, and L is the loss function that
determines the optimal forecast.

We note that the forecasting problem can be posed in two dif-
ferent modes:55 the iterative and the direct one. In the iterative mode,
one trains one-step ahead surrogate models based on the available
time series and simulates/iterates the models to predict future values.
In the direct mode, forecasting is performed in a sliding-window
framework, where the model is retrained with the data contained
within the sliding window to provide a multiperiod-ahead value of
the dependent variables. Here, we aim at testing the performance of
the proposed scheme for one-period ahead of time predictions (i.e.,
with k = 1) with both iterative and direct modes. For our illustra-
tions, we used two surrogate models, namely, MVAR and GPR. A
brief description of the models follows.

A. Multivariate autoregressive (MVAR) model

An MVAR model can then be written as

yt = θ0 +
m
∑

j=1

yt−j2j + et, (25)

where yt = [yt1, yt2, . . . , ytd]
T ∈ R

d is the vector of the response time
series at time t, m is the model order, i.e., the maximum time
lag, θ0 ∈ R

d is the regression intercept, 2j ∈ R
d×d is the matrix

containing the regression coefficients of the MVAR model, and

et = [e(1)t , e(2)t , . . . , e(d)t ]
T

is the vector of the unobserved errors at
time t, which are assumed to be uncorrelated random variables with
zero mean and constant variance σ 2. In a more general form, in view
of (22), the MVAR model can be written as

yik = θ0k +
m
∑

j=1

θjkzij + eik, i = 1, 2, . . . , d, k = 1, 2, . . . , N,

(26)
where yik is the model output for the ith variable at the kth time
instant, θ0k ∈ R is the corresponding regression intercept and θjk the
corresponding jth regression coefficient, and zij is the jth predic-
tor of the ith response variable (e.g., the time-delayed time series).
According to the Gauss–Markov theorem, the best unbiased linear
estimator of the regression coefficients is the one that results from
the solution of the least-squares (LS) problem,

arg min
θ0k ,θjk

d
∑

i=1

N
∑

k=1



yik − θ0k −
m
∑

j=1

θjkzij − eik





2

,

given by

2̂ = (ZTZ)
−1

ZTY, (27)

where Y = [y1, y2, . . . , yd] ∈ R
N×d and Z = [1N, z1, z2, . . . , zm]

∈ R
N×(m+1). Assuming that the unobserved errors are i.i.d. normal

random variables and then by the maximum likelihood estimate of
the error covariance, one can also estimate the forecasting intervals
of a new observation.
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B. Gaussian process regression (GPR)

An introduction to the use of Gaussian processes for time-
series forecasting can be found in Refs. 5 and 56. For the implemen-
tation of GPR, it is assumed that the unknown function φ in (22) can
be modeled by d single-output Gaussian distributions given by

P(φi|z) = N (φi|µ, K(z, z|θ)), (28)

where φi = [φi(z1),φi(z2), . . . ,φi(zN)], φi is the ith component of
φ, µ(z) is the vector with the expected values of the function, and
K(z, θ) is a N × N covariance matrix formed by a kernel. The prior
mean function is often set to µ(z) = 0 with appropriate normaliza-
tion of the data.

Predictions at a new point, say, z∗, are made by drawing
φi∗ from the posterior distribution P(φi|(Z, yi)), i = 1, 2, . . . , d,

where Z = [z1, z2, . . . , zN]T ∈ R
N×p, and by assuming a Gaussian

distributed noise, and appropriate normalization of the data points
is given by the joint multivariate normal distribution,

[

yi

φi(x∗)

]

∼ N

(

0,

[

K(Z, Z|θ)+ σ 2I k(Z, z∗θ)
k(z∗, Z|θ) k(z∗, z∗|θ)

])

. (29)

It can be shown that the posterior conditional distribution

P(φi(x∗)|yi, Z, z∗) (30)

can be analytically derived, and the expected value and covariance of
the estimation are given by

φ̄i(z∗) = k(z∗, Z|θ)
(

K(Z, Z|θ)+ σ 2I
)−1

yi, (31)

σ 2
∗ = k(z∗, z∗|θ)− k(z∗, Z|θ)[K(Z, Z|θ)+ σ 2I]

−1
k(Z, z∗|θ). (32)

The hyperparameters in the above equations are estimated by mini-
mizing the marginal likelihood that is given by

` = − log p(yi|Z, θ)

= 1

2
yT

i [K(Z, Z|θ)+ σ 2I]
−1

yi +
1

2
log[K(Z, Z|θ)+ σ 2I]

+ N

2
log 2π .

Here, for the forecasting of the EEG and FOREX signals, we used a
mixed kernel composed by (see, e.g., Corani et al.57), namely, a radial
basis function kernel,

k(zi, zj) = θ 2
1 exp

(

−
||zi − zj||2L2

2θ 2
2

)

; (33)

a linear kernel,

k(zi, zj) = θ 2
3 + θ 2

4 〈zi, zj〉; (34)

a periodic kernel,

k(zi, zj) = θ 2
5 exp

(

−2 sin2 (π ||zi − zj||L2/θ6)

θ 2
7

)

; (35)

and a white noise kernel,

k(zi, zj) = θ 2
8 δij. (36)

For the PDEs, we used a kernel of the Matérn class, and, in
particular, the Matérn52 kernel given by56

k(zi, zj) = 21−ν

0(ν)

(√
2ν||zi − zj||L2

l

)ν

Kν

(√
2ν||zi − zj||L2

l

)

,

(37)

where ν = 5
2
, Kν is the modified second kind Bessel function, and

l > 0.

V. SOLUTION OF THE PRE-IMAGE PROBLEM

The final step is to solve the pre-image problem, i.e., “lift” the
predictions made by the reduced-order surrogate models on the
manifold back to the original high-dimensional space. In the case
of PCA, this task is trivial, as the solution to the reconstruction
problem, given by

argmin
Ud∈RD×d

N
∑

i=1

||xi − UdU
T
d xi||2L2

, UT
d Ud = I, (38)

is just a linear transformation, which maximizes the variance of the
data on the linear manifold, and is given by the first d principal
eigenvectors of the covariance matrix.

In the case of nonlinear manifold learning algorithms, such as
LLE and DMs, we want to learn the inverse map (lifting operator),

L ≡ R
−1 : R(X) → X, (39)

for new samples on the manifold y∗ 6∈ R(X). This inverse problem is
referred as the “pre-image” problem. The “out-of-sample extension”
problem usually refers to the direct problem, i.e., that of learning the
direct embedding map (i.e., the restrictions to the manifold) R(X) :
X → R for new samples in the input space x∗ 6∈ X. Toward this aim,
a well-established methodology is the Nyström extension.58

In general, the solution of the pre-image problem can be
posed as

arg min
c

||y∗ − R(L (y∗)|c))||, (40)

subject to a constraint, where L (·)|c is the lifting operator depend-
ing on some parameters c.

Below, we describe the reconstruction methods that we used
in this work, namely, RBFs interpolation and geometric harmonics
(GH), which provide a direct solution of the inverse problem, thus
giving some insight about their implementation and pros and cons.
For a review and a comparison of such methods in the framework of
chemical kinetics, see Chiavazzo et al.30

A. Radial basis function (RBF) interpolation

The lifting operator is constructed with interpolation through
RBFs among the corresponding set of say, k neighbors of the new
point y∗. The lifting operator is defined by30

L (y∗) = xi∗ =
k
∑

j=1

cjiψ(||y∗ − yj||), i = 1, 2, . . . , D, (41)

where xi∗ is the ith coordinate of x∗, the yj’s are the neighbors of the

unseen sample y∗ on the manifold, andψ is the radial basis function.

Chaos 32, 083113 (2022); doi: 10.1063/5.0094887 32, 083113-7

Published under an exclusive license by AIP Publishing

 16 January 2024 08:49:17

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

Similarly, the restriction operator can be written as

R(x∗) = yi∗ =
k
∑

j=1

cjiψ(||L (y∗)− L (yj)||), i = 1, 2, . . . , D,

(42)

where L (yj) = xj is the known image of yj (the neighbors of y∗ in

the ambient space).
Two of the most common RBFs used for this task are the

Gaussian kernel defined as

ψ(yi, yj) = exp
(

−ε||yi − yj||
p
L2

)

, (43)

where ε is the so-called shape parameter and the so-called radial
powers defined as

ψ(yi, yj) = ||yi − yj||
p
L2

, (44)

where p is an odd integer.
Thus, the unknown coefficients cji of the lifting operator are

given by the solution of the following linear system:

A











c1i

c2i

...
cki











=











x1i

x2i

...
xki











, i = 1, 2, . . . , D, (45)

where

A =











0 ψ(y1 − y2) . . . ψ(y1 − yk)

ψ(y2 − y1) 0 . . . ψ(y2 − yk)

...
... . . .

...
ψ(yk − y1) ψ(yk − y2) . . . 0











, (46)

and xji is the ith coordinate of the jth point in the ambient space,
whose restriction to the manifold is the jth nearest neighbor of y∗.
Then, (41) can be used to find the coordinates of x∗ in the ambient
space.

1. Convergence and efficiency

It has been proven (see Monning et al.59 and the references
therein) that for Gaussian RBFs, the approximation convergence
as defined by the fill distance, say, h, in terms of Linf to a function
in the subspace spanned by the RBFs (also called native space) is
exponential. However, for any practical purposes, Gaussian kernels
result to an ill-conditioned matrix A when k is large,59,60 relatively
narrow native spaces of convergence, while the optimal selection
of the optimal shape parameter imposes an extra burden. In such
cases, one can resort to established techniques for the solution of
(45) using, for example, the Moore–Penrose pseudoinverse of A via
singular value decomposition or Tikhonov regularization. On the
other hand, radial powers are better for the task of interpolation
compared to Gaussian kernels, as they do not suffer from satura-
tion error, thus result in a wider native space of convergence and
in faster convergence rates.59,61 Here, for our computations, we used
radial powers with p = 1.

B. Geometric harmonics (GHs)

GHs are a set of functions that allow the extension of the
embedding of new unseen points on the manifold x∗ 6∈ X, which
are not given in the set of points used for building the embedding.23

Their derivation is based on the Nyström (or quadratic) extension
method,58 which has been used for the numerical solutions of inte-
gral equations,62,63 and in particular, the Fredholm equation of a
second kind, read as

f(t) = g(t)+ µ

∫ b

a

k(t, s)f(s)ds, (47)

where f(t) is the unknown function, while k(t, s) and g(t) are known.
The Nyström method starts with the approximation of the inte-
gral, i.e.,

∫ b

a

y(s)ds ≈
N
∑

j=1

wjy(sj), (48)

where sj are N appropriately chosen collocation points and wj

are the corresponding weights, which are determined, e.g., by the
Gauss–Jacobi quadrature rule. Then, by using (48) in (47) and eval-
uating f and g at the N collocation points, we get the following
approximation:

(I − µK̃)f̂ = g, (49)

where the matrix K̃ has elements k̃ij = k(si, sj)wj. Based on the above,
the solution of the homogenous Fredholm problem (g = 0) is given
by the solution of the eigenvalue problem,

K̃f̂ = 1

µ
f̂, (50)

i.e.,
N
∑

j=1

wjk(si, sj)f̂j = 1

µ
f̂i, i = 1, 2, . . . , N, (51)

where f̂i = f̂(si) is the ith component of f̂. The Nyström extension
of f(t), using a set of N sample (collocation) points, at an arbitrary
point x in the full domain, is given by

E (f(x)) = f̂(x) = µ

N
∑

j=1

wjk(x, sj)f̂j. (52)

Within the framework of DMs, we seek for the out-of-the-sample
(filtered) extension of a real-valued function f defined at N sample
points xi ∈ X to one or more unseen points x∗ /∈ X. The function
f can be, for example, a DM coordinate λt

jvj(xi), j = 1, 2, . . . , d, or

another function representing the output of a regression model.64,65

Recalling that the eigenvectors vj form a basis, the extension is
implemented23 by first expanding f(xi) in the first d parsimonious
eigenvectors vl of the Markovian matrix Pt,

f̂(xi) =
d
∑

l=1

alvl(xi), i = 1, 2, . . . , N,

where al = 〈vl, f 〉 are the projection coefficients of the function on
the first d parsimonious eigenvectors and f ∈ R

N is the vector con-
taining the values of the function at the N points xi. Then, one
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computes the Nyström extension of f̂ at x∗ using the same projection
coefficients as

E (f̂(x∗)) =
d
∑

l=1

alv̂l(x∗), (53)

where

v̂l(x∗) = 1

λt
l

N
∑

j=1

k(xj, x∗)vl(xj), l = 1, 2, . . . , d. (54)

are the corresponding GHs. Scaling up the (filtered) extension of the
function f to a set of, say, L new points can be computed using the
following matrix product:23,64

E (f̂) = KL×NVN×d3
−1
d×dV

T
d×N fN×1, (55)

where KL×N is the corresponding kernel matrix, VN×d is the matrix
with columns the d parsimonious eigenvectors vl, and 3d×d is the
diagonal matrix with elements λt

l .
The above direct approach provides a map from the ambi-

ent space to the reduced-order space (restriction) and vice versa
(lifting).

VI. THE CASE STUDIES

For demonstrating the performance of the proposed numerical
framework and comparing the various embedding, modeling, and
reconstruction approaches, we used (a) synthetic time series resem-
bling EEG recordings generated by simplistic linear and weakly
nonlinear stochastic discrete models, (b) a linear parabolic PDE
for which an analytical solution exists, and the celebrated Brusse-
lator model introduced by Prigogine66 consisting of a system of two
nonlinear parabolic PDEs, and (c) a real-world data set of ten key
FOREX pairs.

A. The synthetic EEG time series

Our synthetic stochastic signals that resemble EEG time
series67,68 are generated by simplistic linear and weakly nonlinear
five-dimensional discrete stochastic models with white noise. Here,
we note that specific low-dimensional synthetic EEG time series are
tractable, transparent paradigms with simple/trivial dynamics, thus
serving to illustrate a “computational proof of concept” of the pro-
posed scheme, for which an MVAR model in the ambient space
is expected for any practical means to perform accurately in the
presence of low-amplitude noise.

The linear five-dimensional stochastic discrete model is given
by the following equations:

y(1)t = 0.2y(1)t−1 − 0.4y(2)t−1 + w(1)
t ,

y(2)t = −0.5y(1)t−1 + 0.15y(2)t−1 + w(2)
t ,

y(3)t = −0.14y(2)t−1 + w(3)
t ,

y(4)t = 0.5y(1)t−1 − 0.25y(2)t−1 + w(4)
t ,

y(5)t = 0.15y(1)t−1 + w(5)
t ,

(56)

where for the training process, the model order is assumed to be
known (here equal to 1).

A second nonlinear model is given by the following equations
(see, e.g., Nicolaou and Constandinou68):

y(1)t = 3.4y(1)t−1

(

1 − y(1)t−1

2
)

exp
(

−y(1)t−1

2
)

+ w(1)
t ,

y(2)t = 3.4y(2)t−1

(

1 − y(2)t−1

2
)

exp
(

−y(2)t−1

2
)

+ 0.5y(1)t−1y
(2)
t−1 + w(2)

t ,

y(3)t = 3.4y(3)t−1

(

1 − y(3)t−1

2
)

exp
(

−y(3)t−1

2
)

+ 0.3y(2)t−1

+ 0.5y(1)t−1

2 + w(3)
t , (57)

y(4)t = 0.5y(1)t−1 − 0.25y(2)t−1 + w(4)
t ,

y(5)t = 0.15y(1)t−1 + w(5)
t .

The proposed scheme was also validated through the time series pro-
duced by a linear stochastic model with a model order greater than
1, given by the following equations:

y(1)t = 0.1y(1)t−1 − 0.6y(2)t−3 + w(1)
t ,

y(2)t = −0.15y(1)t−3 + 0.8y(2)t−3 + w(2)
t ,

y(3)t = −0.45y(2)t−3 + w(3)
t ,

y(4)t = 0.45y(1)t−3 − 0.85y(2)t−3 + w(4)
t ,

y(5)t = 0.95y(1)t−2 + w(5)
t .

(58)

In all the above models, the time series w(i)
t , i = 1, 2, 3, 4, 5, are

uncorrelated normally distributed noise with zero mean and unit
standard deviation.

B. THE NUMERICAL CONTINUATION OF SOLUTIONS

OF (PARABOLIC) PDEs

The proposed scheme can also be potentially used for con-
structing reduced-order surrogate models to learn and consequently
predict the dynamics of high-dimensional systems as those resulting
from the discretization of PDEs. Here, we illustrate this possibility
by considering two problems. The first one is a linear parabolic PDE
given by69

∂u(x, t)

∂t
= ∂2u

∂x2
− u. (59)

This provides a simple paradigm that can be easily and success-
fully treated using PCA. Using Neumann boundary conditions in
[0 π] and initial conditions u(x, 0) = 0.4 cos(2x)+ 1.5, the ana-
lytical solution is given by

u(x, t) = 0.4 exp(−5t) cos(2x)+ 1.5 exp(−t). (60)

The second problem is the celebrated Brusselator system of
nonlinear PDEs that gives rise to sustained oscillations (limit cycles).
The model is given by the following coupled system of parabolic
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PDEs:

∂u(x, t)

∂t
= Du

∂2u

∂x2
+ a − (1 + b)u + vu2, (61)

∂u(x, t)

∂t
= Dv

∂2v

∂x2
+ bu − vu2, (62)

with Dirichlet boundary conditions (BCs). Here, for our illustra-
tions, we solved the above system with a = 1, b = 3, Du = Dv = 1

50

using central finite differences with 20 equidistant collocation points
in (0 1) with BCs,

u(0, t) = u(1, t) = 1, v(0, t) = v(1, t) = 3,

and initial conditions (ICs)

u(x, 0) = 1 + sin(2πx), v(x, 0) = 3.

For the time integration of the resulting stiff system of 40 ODEs
in the interval (0 33], we have used the ode15s stiff solver of
the Matlab ODE suite70 with absolute and relative tolerances set to
1 × 10−3 and 1 × 10−6, respectively. In order to find (i) the optimal
reduced-order GPR surrogate model, (ii) the optimal set of values
of the hyperparameters (values of the kernel parameters, number
of eigenpairs, number of nearest neighbors) for the embedding and
the solution of the pre-image problem, and (iii) to assess the predic-
tion performance of the proposed scheme, we split the dataset into
training, validation, and test sets. Details on the splitting are given
in Sec. VII.

C. The FOREX forecasting problem

We used the investpy 0.9.14 module of Python71

to download ten USD-based FOREX pairs daily spot closing
prices from the www.investing.com open API, spanning the
period 03/09/2001–29/10/2020: EUR/USD, GBP/USD, AUD/USD,
NZD/USD, JPY/USD, CAD/USD, CHF/USD, SEK/USD, NOK/
USD, and DKK/USD. The time period was selected to contain cru-
cial market crashes like the 2008 Lehman related stock market crash,
the 2010 sovereign debt crisis in the Eurozone, and even the most
recent COVID-19 related market crash of 2020.

For our analysis, we computed the compounded daily returns
of the FOREX pairs as

ri,t = log

(

Si,t

Si,t−1

)

, (63)

where Si,t is the spot price of the ith FOREX pair in the data set above
and ri,t is the corresponding compounded return at date t. How-
ever, trading the FOREX markets is not only associated with the spot
price movements but also with the so-called currency carry trading.
The currency carry-trading involves first the identification of high
interest-paying investment assets (e.g., bonds or short-term bank
deposits) denominated in a country currency (e.g., Japanese yen).
Then, the investment is carried on by borrowing money in another
currency for which the paying interest rate is lower. Such a trading
requires the approximation of the so-called interest-rate-differential
(IRD) excess returns, which should be incorporated in the FOREX
price movements (see, e.g., Menkhoff et al.72). Here, we used the
short-term interest rates data retrieved from the OECD database as

the proxy of these IRD excess returns. Since the short-term inter-
est rates data are reported on a monthly basis and on an annual
percentage format, we constructed daily approximations by linearly
interpolating through the available downloaded records (using the
Pandas module of Python73) and normalizing on the basis of an
annual calendar period. After this pre-processing step, we denote
as IRUSA,t the time series of the daily approximations of the USA
short-term interest rates, and IRi,t is the corresponding time series
of each of the other i = 1, . . . , 10 countries. Then, the interest rate
differential (IRD) time series are given by

IRDi,t = IRi,t − IRUSA,t. (64)

Finally, the so-called carry-adjusted returns of the FOREX are given
by (see also, e.g., Menkhoff et al.72)

xi,t = ri,t + IRDi,t, (65)

where xi,t is the ith FX pair “carry” adjusted return corresponding to
its raw “unadjusted” market price return, ri,t is defined in (63) and
IRDi,t.

For quantifying the potential excess returns (profits), we con-
structed a trading strategy based on the so-called risk parity rationale
(see, e.g., Braga74) where each asset is allocated with a portfolio
weight, which is proportional to its inverse risk. Thus, one assigns
higher portfolio weights to less volatile assets and smaller portfo-
lio weights to more risky assets. Thus, the risk is quantified using
the volatility σi,t (measured by the standard deviation of logarith-
mic returns over a specific time period up to the t trading day)
of each asset i of the portfolio plus the total portfolio volatility. In
our FOREX problem, the risk parity portfolio allocation practically
means investing 1/σi,t at each of the i = 1, 2, . . . , 10 FOREX pairs
with corresponding carry-adjusted returns xi,t. By performing one-
step ahead predictions for each of carry-adjusted returns of the 10
pairs, denoted as x̂i,t+1, we create a “binary,” or otherwise called
“directional,” trading signal of “buy” or “sell” for each one of the
FOREX. Thus, the trading strategy reads as follows:

ui,t = sign(x̂i,t+1) =
{

1, “buy,”

−1, “sell.”
(66)

Based on the above, the profit or loss at the next day (t + 1) is
given by

5t+1 =
D
∑

i=1

ui,txi,t+1

σi,t
, (67)

where xi,t+1 is the real ith FOREX pair return at time t + 1, and5t+1

is the risk parity portfolio return at time t + 1.

VII. NUMERICAL RESULTS

For the implementation of the numerical algorithms, we
used the datafold, sklearn, and statsmodels packages of
Python.75–77 The selection of the eigensolver was based on the spar-
sity and size of the input matrix: ARPACK was used if the size
of the input matrix was greater than 200 and n + 1 < 10 (where
n is the number of requested eigenvalues); otherwise, the “dense”
option was used. The ARPACK package78 implements implicitly
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restarted Arnoldi methods, using a random default starting vec-
tor for each iteration, with a tolerance tol = 10−6 and a maxi-
mum number of 100 iterations. This approach is implemented by
the function scipy.sparse.linalg.eigsh of the scipy

module (upon which the sklearn one depends).79 The “dense”
eigensolver is implemented by the function eigh of the scipy
module and returns the eigenvalues and eigenvectors computed
using the LAPACK routine syevd using the divide and conquer
algorithm.80,81 We used the default value of the tolerance of the New-
ton–Raphson iterations, which is of the order of the floating-point
precision, and the maximum number of iterations was set to 30N
iterations, where N is the size of the matrix.

The DM embedding on the training set of all data sets was
performed using d parsimonious eigenvectors.82 Here, for the con-
struction of the graph at the first step, we used the standard Gaussian
kernel, defined by

k(xi, xj) = exp

(

−
‖xi − xj‖2

L2

σ

)

, (68)

where σ is a scaling parameter that controls the size of the neighbor-
hood (or the connectivity of the graph). For its derivation, we follow
the systematic approach provided by Singer et al.83 The full kernel is
used for the calculations.

The VAR models were trained using the VAR class of the
statsmodels.tsa. vector_ar.var_model routine using
the OLS default method for the parameter estimation. The corre-
sponding LAPACK function used to solve the least-squares problem
is the default gelsd, which exploits the QR or LQ factorization of
the input matrix.

The hyperparameters of the GPR model were optimized using
the (default) L-BFGS-B algorithm of the scipy.optimize.

minimize method.84,85 The gradient vector was estimated using
forward finite differences with the numerical approximations of the
Jacobian being performed with a default step size eps = 10−8. We
used the default values for tolerances and the maximum number of
function evaluations and the maximum number of iterations (i.e.,
15 000, as well as the default value for the maximum number of line
searches per iteration, i.e., 20).

For the lifting task for the problems of EEG signals and
FOREX, 50 nearest neighbors were considered for interpolation
by all the methods. The underlying k-NN algorithm is based
on the algorithm proposed in Maneewongvatana and Mount.86

Using different values of the number of nearest neighbors within
the range 20–100 did not change the outcomes of the analy-
sis. In the case of RBF interpolation, the underlying linear sys-
tem of equations was solved by the LAPACK dgesv routine
from scipy.linalg.lapack.dgesv, which implements the
default method of the LU decomposition with partial pivoting. For
the GH approach, we used the Gaussian kernel. In effect, we are
performing “double” DM here—computing diffusion maps on the
leading retained Diffusion map components for the reduced embed-
ding. This procedure, suggested in Chiavazzo et al.,30 can actually be
performed “once and for all” globally.87

The computations were performed using a system with an Intel
Core i7-8750H CPU @2.20 GHz and 16GB of RAM.

A. Synthetic time series

For both the linear and nonlinear models, we produced 2000
points. We used 1500 points for learning the manifold and for
training the various models and 500 points to test the forecasting
performance of the various schemes. The forecasting performance
was tested using the iterative mode, i.e., by training the models for
one-step ahead predictions and then simulating the trained model
iteratively to predict future values. The performance was measured
using the root mean square error (RMSE) of the residuals, read as

RMSE = 1

N

√

√

√

√

N
∑

i=1

(x̂i − xi)
2
, (69)

where x̂i are the predictions and xi the actual data. To quantify
the forecasting intervals due to the stochasticity of the models, we
performed 100 runs for each combination of manifold learning
algorithms (DMs and LLE), models (MVAR and GPR), and lifting
methods (RBFs and GHs), reporting the median and the 5th and
95th percentiles of the resulting RMSE. The RMSE values obtained
with the naïve random walk model, as well as with the MVAR
and GPR models trained in the original space, are also given for
comparison purposes.

In Table I, we report the forecasting statistics of the time series
produced with the linear model given by (56) as obtained over 100
runs. As it is shown, both the MVAR and GPR models trained in the
original five-dimensional space outperform the naïve random walk.
The RMSEs of the MVAR and GPR models suggest a good match
with the stochastic model, with the residuals being approximately
within one standard deviation of the distribution of the noise level.
In the same table, we provide the corresponding forecasting statis-
tics as obtained with the proposed “embed–forecast–lift” scheme for
the various combinations of manifold learning algorithms, regres-
sion models, and lifting approaches. For our illustrations, we have
chosen the first two parsimonious DM coordinates and the corre-
sponding two LLE eigenvectors. As shown, the best performance
is obtained with the GH lifting operator. Using GHs for lifting
and any combination of the selected manifold learning algorithms
and models outperforms all other combinations, thus resulting in
practically the same RMSE values when compared with the predic-
tions made in the original space. This suggests that the proposed
“embed–forecast–lift” scheme applied in the 5D feature space pro-
vides a very good reconstruction of the predictions made in the
original space. On the other hand, lifting with RBF interpolation
with LU decomposition generally resulted in poor reconstructions
of the high-dimensional space, thus, in many cases, giving wide
forecasting intervals that contained the median value of the naïve
random walk RMSE.

Next, in Table II, we report the forecasting statistics of the time
series for the nonlinear stochastic model (57) as obtained over 100
runs. As in the case of the linear stochastic model, both MVAR and
GPR trained in the original 5D space outperform the naïve random
walk. The resulting RMSE values suggest a good match with the
nonlinear stochastic model. Yet, the match is poorer than the one
obtained for the linear model.

We also provide the corresponding forecasting statistics as
obtained with the proposed “embed–forecast–lift” scheme. For
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TABLE I. Linear stochastic model (56). RMSE statistics (median, 5th, and 95th percentiles over 100 runs) for each of the five variables as obtained by (a) training MVAR and

GPR models with model order one in the original 5D space [MVAR(OS), GPR(OS)] and (b) the proposed “embed–forecast–lift” scheme for all combinations of the manifold

learning algorithms (DMs and LLE) with two coordinates, models (MVAR and GPR), and lifting approaches (RBFs and GHs). For comparison purposes, the RMSEs obtained

with the naïve random walk are also reported.

Model/variable y(1)t y(2)t y(3)t y(4)t y(5)t

Random walk 1.374 1.446 1.427 1.551 1.425
(1.287,1.466) (1.333,1.528) (1.339,1.497) (1.455,1.654) (1.335,1.512)

MVAR(OS) 1.151 1.180 1.010 1.224 1.011
(1.077,1.218) (1.113,1.269) (0.966,1.062) (1.156,1.281) (0.960,1.063)

GPR(OS) 1.151 1.179 1.010 1.224 1.011
(1.077,1.218) (1.113,1.272) (0.966,1.061) (1.154,1.284) (0.959,1.064)

DM-GPR-GH 1.153 1.184 1.012 1.228 1.013
(1.082,1.220) (1.117,1.273) (0.966,1.061) (1.160,1.287) (0.959,1.065)

LLE-GPR-GH 1.155 1.182 1.011 1.230 1.014
(1.077,1.218) (1.115,1.272) (0.966,1.065) (1.157,1.292) (0.962,1.064)

DM-GPR-RBF 1.260 1.390 1.163 1.365 1.166
(1.111,2.201) (1.149,1.980) (0.997,2.331) (1.173,1.939) (0.997,1.853)

LLE-GPR-RBF 1.197 1.234 1.076 1.270 1.103
(1.103,1.452) (1.131,1.461) (0.993,1.582) (1.175,1.468) (0.990,1.553)

DM-MVAR-GH 1.151 1.180 1.011 1.225 1.011
(1.078,1.220) (1.113,1.269) (0.966,1.063) (1.155,1.288) (0.959,1.063)

LLE-MVAR-GH 1.155 1.182 1.011 1.229 1.014
(1.077,1.218) (1.115,1.271) (0.966,1.065) (1.158,1.293) (0.962,1.064)

DM-MVAR-RBF 1.289 1.312 1.135 1.341 1.106
(1.124,2.132) (1.146,2.018) (0.996,1.635) (1.186,1.933) (0.99,1.601)

LLE-MVAR-RBF 1.187 1.230 1.080 1.264 1.096
(1.106,1.477) (1.14,1.477) (0.995,1.602) (1.177,1.479) (0.989,1.558)

embedding in the reduced space, we have taken three (parsimo-
nious) coordinates. Again, the best performance is obtained with the
GH lifting operator for any combination of manifold learning algo-
rithms and models. Importantly, the reconstruction errors between
the forecasts with the “full” MVAR and GPR models trained directly
in the original 5D space and the ones obtained with the proposed
“embed–forecast–lift” scheme are negligible up to a three-digit accu-
racy for all five variables. As with the previous case, lifting with RBFs
resulted in a poor reconstruction of the high-dimensional space,
with forecasting intervals containing the median RMSE value of the
naïve random walk.

Finally, in Table III, we report the RMSE statistics for the
time series produced with the linear model with a model order
three [see (58)] as obtained over 100 runs from (a) the naïve
random walk model applied to the original 5D space, (b) the
MVAR models trained in the original 5D data set with model
orders one [MVAR(1)] and three [MVAR(3)], and (c) the proposed
“embed–forecast–lift” method with the embedding applied to the
original 5D data set using DM and LLE for embedding with three
coordinates. In the reduced-order space, we have trained MVAR
models with model orders 1 and 3 and used GHs for lifting. The best
results were obtained when using the proposed scheme with DMs
for embedding and a model order 3 for the training of the MVAR
model in the corresponding manifold. Importantly, the implemen-
tation of DM-MVAR(3)-GH succeeds in reproducing quite well the

results obtained by training MVAR with a maximum delay of three
in the original space.

B. Propagation of solutions of PDEs

For both problems, we show the results obtained with PCA,
DMs, and LLE for embedding the data on the low-dimensional
manifold, GPR as a reduced-order surrogate model, and RBFs
and GHs for solving the pre-image problem. For the linear PDE
(59), we used the analytical solution [see Eq. (60)] with 100
equidistant spatial points to produce 5000 solution profiles in the
time interval [0 0.25]. We used the first 4000 solution profiles
to learn the manifold and to train the surrogate reduced-order
GPR model, the next 500 solution profiles as a validation test
to get the optimal set of values of the hyperparameters for the
solution of the pre-image problem, thus resulting in the best pre-
diction for this interval, and the last unseen 500 solution profiles
as a test set to assess the prediction performance of the pro-
posed scheme. In Fig. 1(a), we show the analytical solution of the
PDE. We used the first 4000 solution profiles for training; blue
lines depict the validation data and red lines the unseen data. In
Fig. 1(b), we show the errors with respect to the analytical solu-
tion using the leading two principal components of PCA. We
note that the PCA fails to adequately approximate the solution
using just the first principal component. In Figs. 1(c) and 1(d),
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TABLE II. Nonlinear stochastic model (57). RMSE statistics (median, 5th, and 95th percentiles over 100 runs) for each of the five variables as obtained by (a) training MVAR

and GPR in the original 5D space [MVAR(OS), GPR(OS)] with model order one, (b) using the proposed “embed–forecast–lift” scheme for all the combinations of the manifold

learning algorithms (DMs and LLE), models (MVAR and GPR), and lifting approaches (RBFs and GHs). For the embedding, three coordinates were used.

Model/variable y(1)t y(2)t y(3)t y(4)t y(5)t

Random walk 1.711 2.085 2.292 1.731 1.435
(1.597,1.815) (1.939,2.258) (2.147,2.437) (1.62,1.819) (1.354,1.527)

MVAR(OS) 1.181 1.438 1.565 1.212 1.021
(1.123,1.234) (1.359,1.555) (1.463,1.648) (1.151,1.272) (0.967,1.076)

GPR(OS) 1.182 1.437 1.684 1.213 1.020
(1.123,1.233) (1.360,1.555) (1.540,1.799) (1.151,1.272) (0.966,1.076)

DM-GPR-GH 1.181 1.440 1.573 1.214 1.022
(1.123,1.234) (1.363,1.56) (1.477,1.654) (1.151,1.276) (0.968,1.077)

LLE-GPR-GH 1.182 1.451 1.579 1.214 1.023
(1.126,1.236) (1.363,1.563) (1.473,1.675) (1.151,1.273) (0.97,1.076)

DM-GPR-RBF 1.488 1.618 2.060 1.710 1.199
(1.172,8.88) (1.392,9.95) (1.642,6.102) (1.203,16.868) (1.012,9.108)

LLE-GPR-RBF 1.214 1.449 1.587 1.254 1.088
(1.133,1.557) (1.365,1.561) (1.502,1.692) (1.159,1.446) (0.989,1.5)

DM-MVAR-GH 1.181 1.438 1.571 1.213 1.022
(1.123,1.234) (1.365,1.555) (1.472,1.649) (1.151,1.274) (0.968,1.076)

LLE-MVAR-GH 1.182 1.452 1.586 1.214 1.023
(1.125,1.235) (1.364,1.563) (1.468,1.669) (1.152,1.275) (0.97,1.076)

DM-MVAR-RBF 1.387 1.534 1.902 1.560 1.131
(1.169,6.743) (1.368,4.634) (1.609,4.5) (1.199,9.294) (0.99,4.655)

LLE-MVAR-RBF 1.213 1.445 1.570 1.253 1.091
(1.135,1.507) (1.366,1.561) (1.484,1.657) (1.159,1.621) (0.998,1.674)

TABLE III. Linear stochastic model with model order three [see (58)]. RMSE statistics (median, 5th, and 95th percentiles over 100 runs) for 100 simulations for each of the five

variables as obtained by (a) training MVAR(1) and MVAR(3) models in the original 5D feature space and (b) the proposed scheme with DMs and LLE, MVAR(1) and MVAR(3)

models, and GHs for lifting. The embedding with DMs and LLE was implemented using three coordinates.

Model/variable y(1)t y(2)t y(3)t y(4)t y(5)t

Random walk 2.138 2.910 1.930 3.499 2.477
(1.898,2.461) (2.412,3.551) (1.755,2.152) (2.978,4.195) (2.253,2.739)

MVAR(1) 1.629 2.121 1.382 2.567 1.840
(1.466,1.851) (1.817,2.515) (1.275,1.517) (2.244,2.997) (1.699,2.031)

MVAR(3) 1.611 2.092 1.371 2.531 1.824
(1.449,1.833) (1.787,2.483) (1.265,1.501) (2.206,2.963) (1.689,2.019)

DM-MVAR(1)-GH 1.630 2.121 1.383 2.569 1.843
(1.467,1.854) (1.825,2.515) (1.273,1.516) (2.244,2.998) (1.697,2.037)

LLE-MVAR(1)-GH 1.651 2.159 1.397 2.619 1.866
(1.472,1.905) (1.832,2.567) (1.281,1.545) (2.269,3.080) (1.705,2.084)

DM-MVAR(3)-GH 1.621 2.103 1.376 2.546 1.835
(1.455,1.839) (1.791,2.484) (1.267,1.509) (2.217,2.972) (1.694,2.028)

LLE-MVAR(3)-GH 1.649 2.149 1.393 2.608 1.862
(1.473,1.902) (1.820,2.572) (1.277,1.550) (2.252,3.065) (1.703,2.094)
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FIG. 1. Linear PDE (60). (a) Analytical solution on 100 equidistant spatial points in [0 π ] in the time interval [0 0.25] tessellated in 5000 equidistant points; the blue
mesh (500 solution profiles) corresponds to the validation set and the red mesh (last 500 solution profiles) depicts the unseen solution profiles that are used as a test set.
(b)–(f) Spatiotemporal errors with respect to the analytical solution obtained with a GPR model trained at the embedded space using a: (b) 2D PCA, (c) 1D LLE for embedding
and RBFs for lifting, (d) 1D LLE for embedding and GHs for lifting, (e) 1D DM for embedding and RBFs for lifting, and (f) 1D DM for embedding and GHs for lifting.

we show the spatiotemporal errors with respect to the analytical
solution using the first LLE coordinate and RBF and GH, respec-
tively, for lifting. Similarly, in Figs. 1(e) and 1(f), we show the
spatiotemporal errors with respect to the analytical solution using

the first DM for embedding and RBF and GH, respectively, for
lifting. We see that for any practical purposes, the 1D LLE and 1D
DM with both RBFs and GHs for lifting perform equivalently and
both outperform the 2D PCA.
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FIG. 2. Brusselator model given by Eqs. (61) and (62), (a) u(x, t), (b) v(x, t) profiles as derived from the numerical solution using central finite differences on 20 equidistant
spatial points in (0 1) and the ode15s stiff solver of the Matlab ODE suite (with the absolute and relative tolerances set to 1 × 10−3 and 1 × 10−6, respectively) for
the time integration of the resulting stiff system of 40 ODEs in [0 33]; the blue mesh (250 solution profiles) depicts the validation set and the red mesh (last 300 solution
profiles) depicts the unseen solution profiles that are used as a test set. (c)–(f) Spatiotemporal errors for u(x, t) (c) and (e) and v(x, t) (d) and (f) with respect to the reference
numerical solution, obtained with a GPR model trained at the embedded space using 3D DMs for embedding and (c) and (d) RBF for lifting and (e) and (f) GH for lifting.

For the 1D Brusselator model of coupled nonlinear parabolic
PDEs given by Eqs. (61) and (62), we sampled the solution in
[0 33] every DT = 0.01, thus getting 3300 solution profiles; we
used the first 2750 as a training set to learn the manifold and train

the reduced-order surrogate GPR model, the next 250 points to find
the optimal set of values of the hyperparameters for the solution of
the pre-image problem, resulting in the best prediction performance
for this interval, and finally, the last 300 unseen points as a test set
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to assess the prediction performance scheme. In Figs. 2(a) and 2(b),
we show the solution profiles for u(x, t) and v(x, t), respectively. In
Figs. 2(c)–2(f), we show the spatiotemporal errors with respect to the
numerical solution using three DM coordinates for embedding and
RBFs [Figs. 2(c) and 2(d)] and GHs [Figs. 2(e) and 2(f)], respectively,
for lifting. In Figs. 2(c) and 2(e), we show the spatiotemporal errors
for u(x, t) and in Figs. 2(d) and 2(f) the spatiotemporal errors for
v(x, t). For this nonlinear problem, the use of PCA fails to predict-
reconstruct adequately the solution profiles even if one takes more
than 20 principal components.

C. FOREX trading

Here, we assessed the performance of the proposed forecast-
ing framework in the FOREX trading application described earlier,
under the annualized Sharpe (SH) ratio88 of the constructed risk par-
ity portfolio. The returns are computed by (67). The basic formula
for calculating the SH ratio is given by

SH = µ5 − Rf

σ5
, (70)

where µ5 is the sample average returns of the risk parity portfolio
and σ5 the corresponding volatility, while the Rf is the risk-free rate,
usually set equal to the annual yield of the US Treasury Bonds. Here,
for our analysis, we have set Rf = 0, which is a fair approximation of
the reality.

The underlying dynamics of the FOREX market is in general
non-autonomous, at least over a long time period. In principle, there

are time-varying exogenous factors, including macroscopic eco-
nomic indices, social interaction, and mimesis (see, e.g., Papaioan-
nou et al.,89 where machine learning has been used to forecast
FOREX taking into account Twitter messages), but also seasonal fac-
tors and rare events (such as the recent COVID19 pandemic), which
influence FOREX over time. This comes in contrast to the synthetic
time series that we have examined here and also other autonomous
models that have been considered in other studies that served as
benchmarks to assess the performance of the various schemes (see
also the discussion in the conclusions, Sec. VIII). Hence, to cope
with such changes of the FOREX market and in general of financial
assets, one would set up a sliding/rolling window, then train mod-
els within the rolling window, and perform (usually) one-day ahead
forecasts for trading purposes.

For our illustrations, we assessed the performance of the pro-
posed scheme based on the so-called risk parity trading strategy
using a one-year (250 trading days) embedding rolling window and
the last 50 or 100 days of the 250-day rolling window for training.
The forecasting performance of the proposed scheme using DMs
and LLE for embedding with three coordinates, MVAR and GPR
for prediction, and GHs for lifting was compared against the naïve
random walk and the full MVAR and GPR models trained and
implemented directly in the original space. A comparison against
the linear embedding provided by PCA with the same number of
principal components was also performed.

Figure 3 depicts the SH ratios obtained with the various meth-
ods. As it is shown, the proposed schemes using the DM and LLE
algorithms for embedding outperform all the other schemes when
considering the same size of the training window. In particular, the

FIG. 3. FOREX trading. One-day-ahead predictions. Sharpe ratios obtained with the proposed framework (using DMs and LLE for embedding, MVAR and GPR for prediction
at the embedded space, and GHs for lifting) as well as with PCA, random walk, and MVAR and GPR models implemented directly in the original space. A rolling window of
250 trading days and three vectors were used for the embedding, while the MVAR and GPR models in the embedded space were trained using the last 50 or 100 points of
the rolling window.
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FIG. 4. Forecasting of the EURO/USD FOREX pair returns (solid blue line) using the LLE-MVAR(1)-GH scheme (red line) using a 100-day sliding training window.

highest SH ratios (∼0.83) are obtained with the combination of
LLE and MVAR within the 100-day training window, followed by
the combination of DMs and GPR in the 100-day training window,
resulting in an SH ratio ∼0.76. The third (∼0.73) and fourth (∼0.72)
larger SH ratios result again from the implementation of the DMs
and MVAR within the 50- and 100-day training windows, respec-
tively. On the other hand, the naïve random walk (black bar) resulted
in a negative SH ratio (∼−0.42). Negative SH ratios (of the order
of −0.35) resulted also from the implementation of PCA with GPR
(yellow bars) for both sizes of the training window, while for the 50-
day training window, the combination of PCA with MVAR resulted
in an almost zero (but still negative) SH ratio. With PCA, a (small)
positive SH value (∼0.23) was obtained with MVAR within the 100-
day training window. The full MVAR and GPR models, trained and
implemented directly in the original space, produced positive SH
ratios, but still smaller than those of the DMs and LLE schemes. In
particular, within the 50-day training window, the full MVAR (GPR)
model resulted in an SH ratio of ∼0.39 (∼0.04), while within the
100-day training window, the full MVAR (GPR) model resulted in
an SH ratio of ∼0.68 (∼0.3). Finally, we also tested the forecasting
performance of the full MVAR and GPR models using the 250-
day training window. Within this configuration, the MVAR model
yielded an SH ratio of ∼0.49, while the GPR model an SH ratio of
∼0.2.

In Fig. 4, we depict indicatively the time series of the
USD/EURO FOREX pair returns and the predictions using the full
MVAR model (blue line), the LLE-MVAR(1)-GH scheme (red line)
using a 100-day sliding training window.

VIII. CONCLUSIONS AND DISCUSSION

We proposed a data-driven numerical framework based on
nonlinear manifold learning for forecasting high-dimensional time
series, which is composed of three basic steps: (i) embedding of

the original high-dimensional data in a low-dimensional man-
ifold, (ii) construction of reduced-order surrogate models and
forecasting on the manifold, and (iii) reconstruction of the pre-
dictions in the high-dimensional space by solving the pre-image
problem.

The task of forecasting is different from that attempted for
the reconstruction of high-dimensional models of dynamical sys-
tems based on interpolation in four main aspects. First, for real-
world data sets, the existence of a relatively smooth low-dimensional
manifold is not guaranteed as in the case of well-defined dynam-
ical models (see, e.g., the discussion in Gajamannage et al.46).
Second, non-stationary dynamics which, in general, are not an
issue when dealing with the approximation of dynamical sys-
tems, pose a major challenge for a reliable/consistent forecast-
ing. It should be noted that the stationarity assumption may be
required to hold true even for interpolation problems. For exam-
ple, the implementation of the MVAR models, but also Gaussian
processes with a Gaussian kernel, requires the stationary covari-
ance function assumption to be satisfied (see, e.g., the discussion
in Rasmussen90 and Cheng et al.91). Third, when dealing with
real-world time series, such as financial time series, the number
of available snapshots (even at the intraday frequency of trad-
ing) is limited in contrast to the size of temporal data that one
can produce by model simulations. In such cases, the quest for
beating the “curse of dimensionality” using the correct (parsimo-
nious) embedding and modeling is stronger. Finally, in the case
of smooth dynamical systems, as the dynamics emerges from the
same physical laws as expressed by the underlying ODEs, PDEs,
or SDEs, what is usually sought is a single global manifold (a
single geometry). However, in many complex problems, such as
those in finance, the best parameterization of the manifold (if it
exists) may change over time. Thus, one would seek for a family of
(sequential-in-time) submanifolds, which can be “identified” within
a rolling window approach.
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The performance of the scheme was assessed by implement-
ing and comparing different combinations of nonlinear manifold
learning algorithms (LLE and DMs), regression models (MVAR
and GPR), and methods for solving the pre-image problem
(geometric harmonics and radial basis functions) on various
problems, including synthetic stochastic data series, the numer-
ical propagation in time of the solution of linear and nonlin-
ear parabolic PDEs, and a real-world data set of FOREX time
series.

As discussed, the solution of the linear system associated with
the RBF interpolation with Gaussian kernels may not be a good
choice, as the system matrix (46) may be numerically rank defi-
cient. In this case, one could compute the solution using, e.g., the
Moore–Penrose pseudoinverse. Moreover, for large-scale almost-
singular linear systems, one could use the GMRES method with
preconditioning.92–94 We intend to study the performance of such
approaches in a future work.

At this point, we remark that there is no systematic way to
choose which manifold learning technique to use (specifically, LLE
or diffusion maps), and in practice, it often highly depends on
the particular case. In the literature, one can find several empir-
ical studies,95 and the current understanding in the community
is that diffusion maps may possibly perform better in model-
ing non-convex manifolds, data on the manifold that are non-
uniformly sampled, and boundary effects. These empirical observa-
tions have been (partially) supported theoretically in a recent line of
work.96–98

As a “restrict-run-lift” scheme, the proposed approach
shares analogies with the equation-free approach and coarse-
timestepping.99–102 Furthermore, as we demonstrated for the case
of the PDEs, the proposed scheme can be bridged with the con-
cept of “gap-tooth”/“patch dynamics” schemes103–105 for the numer-
ical solution of high-dimensional PDEs; we will report on such a
methodology in a future paper.

Finally, we note that in order to cope with the generalization
property and the topological instability issues (see, e.g., Balasubra-
manian et al.19) that arise in implementing kernel-based manifold
learning algorithms when the data set is not sufficiently dense
on the manifold, and/or in the presence of “strong” stochastic-
ity, one can resort to techniques, such as the constant-shift one
to appropriately adjust the graph metric, and techniques for the
removal of outliers from the data set and the construction of smooth
geodesics.46,50,106
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