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Multivariate time-series have become abundant in recent years, as many data-acquisition systems 
record information through multiple sensors simultaneously. In this paper, we assume the 
variables pertain to some geometry and present an operator-based approach for spatiotemporal 
analysis. Our approach combines three components that are often considered separately: 
(i) manifold learning for building operators representing the geometry of the variables, (ii) 
Riemannian geometry of symmetric positive-definite matrices for multiscale composition of operators 
corresponding to different time samples, and (iii) spectral analysis of the composite operators 
for extracting different dynamic modes. We propose a method that is analogous to the classical 
wavelet analysis, which we term Riemannian multi-resolution analysis (RMRA). We provide some 
theoretical results on the spectral analysis of the composite operators, and we demonstrate the 
proposed method on simulations and on real data.

1. Introduction

Multivariate time-series (temporal signals) have been studied in the statistics and signal processing societies for many years (e.g., 
see [37,81] for a non-exhaustive literature survey), and traditional analysis methods usually highly depend on some predefined 
models and do not consider the unknown nonlinear structure of the variables that often exists underlying the high-dimensional 
time samples. In order to accommodate contemporary data acquisitions and collections, large research activity has been devoted 
to developing spatiotemporal analysis that is specifically-designed to infer this underlying structure and/or take it explicitly into 
account. In the last decade, perhaps the most notable attempts to handle such signals with a geometry defined by graphs are graph 
signal processing [59,64,65,70], graph neural networks [44,66], and geometric deep learning [13]. Another prominent line of work is 
based on an operator-theoretic approach for dynamical systems analysis [8,14,45,67,82,87], where the time samples have a manifold 
structure. Still, despite these recent efforts, to the best of our knowledge, when there is a time-varying manifold structure underlying 
the time samples, only a few works are available, e.g. [2,32,33].

In this work, we propose a new multi-resolution spatiotemporal analysis of multivariate time-series. In contrast to standard multi-

resolution analysis using wavelets defined on Euclidean space [22,53], we present an operator-based analysis approach combining 
manifold learning and Riemannian geometry, which we term Riemannian multi-resolution analysis (RMRA). Concretely, consider a 
multivariate time-series {𝐱𝑡}. Suppose the temporal propagation of the time-series at time step 𝑡 can be modeled by two diffeomorphic 
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manifolds 𝑓𝑡 ∶ 𝑡 → 𝑡+1, and suppose the corresponding pairs of time samples (𝐱𝑡, 𝐱𝑡+1) are given by 𝐱𝑡[𝑖] ∈ 𝑡 and 𝐱𝑡+1[𝑖] =
𝑓𝑡(𝐱𝑡[𝑖]) ∈𝑡+1, where 𝐱𝑡[𝑖] is the 𝑖th entry of the sample 𝐱𝑡 for 𝑖 = 1, … , 𝑁 . Note that the entries of the samples 𝐱𝑡 lie on a manifold, 
and therefore, each entry is typically high-dimensional. In other words, at each time 𝑡, we have 𝑁 high-dimensional points that are 
distributed on the manifold 𝑡. Our RMRA consists of the following steps. First, we construct a diffusion operator for each time 
sample 𝐱𝑡, characterizing its underlying manifold 𝑡. This step is performed using a manifold learning technique, diffusion maps 
[18], that facilitates a finite-dimensional matrix approximation of the Laplacian operator of the manifold based on the time sample. 
This approximation is informative because the Laplacian operator is known to bear the geometric information of the manifold [6,41]. 
Then, for each pair of temporally consecutive time frames (𝐱𝑡, 𝐱𝑡+1), we present two composite operators based on “Riemannian 
combinations” of the two respective diffusion operators. Typically, diffusion operators are not symmetric, but they are similar to 
symmetric positive-definite (SPD) matrices. We could thus define diffusion operators as SPD matrices, whose space is endowed with 
a Riemannian structure. Therefore, taking into account this Riemannian manifold structure for the composition of the operators is 
natural. Indeed, we show, both theoretically and in practice, that one operator enhances common components that are expressed 
similarly in 𝑡 and 𝑡+1, while the other enhances common components that are expressed differently. These properties could be 
viewed as analogous to low-pass and high-pass filters in this setting, leading to a spatiotemporal decomposition of the multivariate 
time series into “low frequency” and “high frequency” components, by considering the common components expressed similarly 
(resp. differently) as the slowly (resp. rapidly) varying components.

To facilitate the multi-resolution analysis of the entire temporal sequence, the construction of the composite operators is recur-

sively repeated at different time scales. Since the composite operators are viewed as low-pass and high-pass filters, the proposed 
framework can be viewed as analogous to the wavelet decomposition for time-varying manifolds in the following sense. At each 
iteration, the two consecutive time samples are “fused” using the composite operators, “decomposing” the multivariate time-series 
into two components: one that varies slowly and one that varies rapidly. The fast varying component is viewed as the “spectral 
feature” of the “first layer”, and the slowly varying component is “downsampled”, decomposed again in the next iteration using the 
composite operators into a slow component and a fast component. Again, the fast component leads to the “spectral feature” of the 
“second layer”. By iterating this procedure, the multivariate time series is decomposed in multiple resolutions.

Broadly, the basic building block of our analysis, focusing on one time step, consists of two construction steps. First, given two 
consecutive time samples (𝐱𝑡, 𝐱𝑡+1), we learn the underlying manifolds 𝑡 and 𝑡+1, and then, we study the (unknown) diffeomor-

phism 𝑓𝑡. We posit that this building block can serve as an independent analysis module by itself. Indeed, the setting of one time step 
we consider can be recast as a related multiview data analysis problem (see Section 2). Consider two diffeomorphic manifolds 1
and 2 and the diffeomorphism 𝑓 ∶1 →2. Let 𝑥 ∈1 and 𝑦 = 𝑓 (𝑥) ∈2. The pair (𝑥, 𝑦) could be considered as two views of 
some object of interest, providing distinct and complementary information. Applying the proposed two-step procedure to this case 
first learns the manifold of each view, and then, studies the diffeomorphism representing the relationship between the two views. In 
[68], the diffeomorphism was analyzed in terms of common and unique components, which were represented by the eigenvectors 
of the diffusion operators. Here, we further characterize these spectral common components. Roughly, the common components are 
classified into two kinds: components that are expressed similarly in the two manifolds in the sense that they have similar eigenvalues 
in both manifolds, and components that are expressed differently in the sense that they have different eigenvalues. Furthermore, we 
refine the analysis and in addition to considering strictly common components, i.e., the same eigenvectors in both manifolds, we also 
consider weakly common components, i.e., similar but not the same eigenvectors. In contrast to the local analysis presented in [68], 
we provide global and spectral analyses, showing that our method indeed extracts and identifies these different components.

We demonstrate the proposed RMRA on a dynamical system with a transitory double gyre configuration. We show that this 
framework is sensitive to the change rate of the dynamical system at different time-scales. Such a framework may be especially 
suitable for studying non-stationary multivariate time-series, particularly when there is a nontrivial geometric relationship among 
the multivariate coefficients. In addition, for the purpose of multimodal data analysis, we demonstrate that the proposed Riemannian 
composite operators enhance common structures in remote sensing data captured using hyperspectral and LiDAR sensors.

The remainder of this paper is organized as follows. In Section 2, we review related work. In Section 3, we present preliminaries. In 
Section 4, we present the proposed approach for multi-resolution spatiotemporal analysis using Riemannian composition of diffusion 
operators. Section 5 shows experimental results. In Section 6, we present spectral analysis of the proposed composite operators. 
Finally, in Section 7, we conclude the paper.

2. Related work

2.1. Manifold learning, diffusion maps, and diffusion wavelets

Manifold learning is a family of methods that consider data lying on some inaccessible manifold and provide a new low-

dimensional representation of the data based on intrinsic patterns and similarities in the data [4,18,63,79]. From an algorithmic 
viewpoint, manifold learning techniques are broadly based on two stages. The first stage is the computation of a typically positive 
kernel that provides a notion of similarity between the data points. The second stage is the spectral analysis of the kernel, giving 
rise to an embedding of the data points into a low-dimensional space. Such a two-stage procedure results in aggregation of multiple 
pairwise similarities of data points, facilitating the extraction of the underlying manifold structure. This procedure was shown to be 
especially useful when there are limited high-dimensional data, plausibly circumventing the curse of dimensionality.

While the spectral analysis of the kernels has been the dominant approach and well investigated, recent work explores different 
directions as well. One prominent direction employs an operator-based analysis, which has led to the development of several key 
2
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methods. Arguably the first and most influential is diffusion maps [18],1 where a transition matrix is constructed based on the kernel, 
forming a random walk on the dataset; such transition matrix is viewed as a diffusion operator on the data. There has been abundant 
theoretical support for diffusion maps. For example, it was shown in [4,40,71] that the operator associated with diffusion maps 
converges point-wisely to the Laplace-Beltrami operator of the underlying manifold, which embodies the geometric properties of 
the manifold, and its eigenfunctions form a natural basis for square integrable functions on the manifold. The spectral convergence 
of the eigenvalues and eigenvectors of the operator associated with diffusion maps to the eigenvalues and eigenfunctions of the 
Laplace-Beltrami operator was first explored in [5], and recently, the 𝐿∞ spectral convergence with convergence rate was reported 
in [28]. See [28] and references therein for additional related work in this direction. The robustness of the diffusion maps operator 
was studied in [29,30], and recently, its behavior under different noise levels and kernel bandwidths was explored using random 
matrix theory [25].

The propagation rules associated with this diffusion operator are in turn used for defining a new distance, the so-called diffusion 
distance, which was shown to be useful and informative in many domains and applications [46,48,76,84]. This notion of diffusion 
promoted the development of well-designed and controlled anisotropic diffusions for various purposes, e.g., nonlinear independent 
component analysis [72], intrinsic representations [77], reduction of stochastic dynamical systems [27,73], and time-series forecast-

ing [8,9,36,87] and filtering [69], to name but a few. In another line of work, the combination and composition of diffusion operators 
led to the development of new manifold learning techniques for learning multiple manifolds [47,51,54,68] as well as for time-series 
analysis [32].

A related line of work that considers multivariate time-series (high-dimensional temporal signals) introduces ways to define 
wavelets on graphs and manifolds, e.g., [19,38,62]. These techniques extend the classical wavelet analysis [53] from one or two 
dimensional Euclidean space to high-dimensional non-Euclidean spaces represented by graphs and manifolds. Specifically, diffusion 
wavelets [19] makes use of a hierarchy of diffusion operators with multiple well-designed diffusion scales organized in a dyadic 
tree. Importantly, none of these methods addresses an underlying manifold with a time-varying metric, but rather a fixed metric that 
exhibits different characteristics in different scales.

2.2. Manifold learning for sensor fusion

The basic building block of our RMRA is based on two diffeomorphic manifolds 𝑡 and 𝑡+1, which represent the temporal 
evolution at time 𝑡. A similar setting consisting of two diffeomorphic manifolds, say 1 and 2, has recently been investigate in 
the context of multimodal data analysis and sensor fusion.

The sensor fusion problem typically refers to the problem of harvesting useful information from data collected from multiple, 
often heterogeneous, sensors. Sensor fusion is a gigantic field. One line of work focuses on the extraction, analysis and comparison 
of the components expressed by the different sensors for the purpose of gaining understanding of the underlying scene [21,58,75]. 
However, due to the complex nature of such data, finding informative representations and metrics of these components by combining 
the information from the different sensors is challenging. Recently, several papers propose data fusion methods relying on manifold 
learning techniques and operator-based data analysis [23,31,43,47,51,68,78]. The basic idea is that data from different modalities or 
views are fused by constructing kernels that represent the data from each view and operators that combine those kernels. Different 
approaches are considered for the combination of kernels. Perhaps the most relevant to the present work is the alternating diffusion 
operator, which was introduced in [47,78] and shown to recover the common latent variables from multiple modalities. This operator 
is defined based on a product of two diffusion operators and then used for extracting a low dimensional representation of the common 
components shared by the different sensors. Other related approaches include different combinations of graph Laplacians [23,31], 
product of kernel density estimators and their transpose for nonparametric extension of canonical correlation analysis [55], and 
various other combinations of diffusion operators [43,51,68]. For a more comprehensive review of the different approaches, see [68]

and references therein.

Largely, most existing sensor fusion algorithms, and particularly those based on kernel and manifold learning approaches, focus 
on the extraction and representation of the common components, in a broad sense. The sensor fusion framework proposed in [68]

extends this scope and considers both the common components and the unique components of each sensor. Therefore, in the context 
of the present work, it could be used for the analysis of the basic building block consisting of two diffeomorphic manifolds. However, 
similarly to the other methods described above, the kernel combination in [68] is achieved through linear operations, thereby 
ignoring the prototypical geometry of the kernels. Conversely, in this work, by taking the Riemannian structure of SPD matrices 
into account, we propose a new geometry-driven combination of kernels and a systematic analysis. This aspect of our work could 
be viewed as an extension of [68] for the purpose of sensor fusion and multimodal data analysis, in addition to the new utility for 
multivariate time-series analysis.

3. Preliminaries

In this section we briefly present the required background for our method. For further details on the theory and derivations we 
refer the readers to [10] and [18].

1 Laplacian eigenmaps could also be considered if the diffusion time is not taken into account [4].
3
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3.1. Riemannian structure of SPD matrices

In many recent studies, representing the raw data using SPD matrices and taking into account their specific Riemannian geometry 
have shown promising results, e.g. in computer vision [7,83], for domain adaptation [85], on medical data [3] and in recognition 
tasks [39]. For example, Barachant et al. [3] proposed a support-vector-machine (SVM) classifier that takes into account the Rie-

mannian geometry of the features, which are SPD covariance matrices, representing Electroencephalogram (EEG) recordings. They 
showed that their “geometry-aware” classifier obtains significantly better results compared with a classifier that simply vectorizes 
the covariance matrices.

Here, we consider the space of SPD matrices endowed with the so-called affine-invariant metric [60]. Using this particular 
Riemannian geometry results in closed-form expressions for useful properties and operations, such as the geodesic path connecting 
two points on the manifold [10] and the logarithmic map and the exponential map [60], which locally project SPD matrices onto 
the tangent space and back. While the focus is on the affine-invariant metric, which is arguably the most widely used, we remark 
that other geometries of SPD matrices exist, e.g., the log-Euclidean [1,61], the log-det [15,74], the log-Cholesky [49], and the Bures-

Wasserstein [11,52], which could be considered as well. In the context of this work, since diffusion operators are strictly positive in 
principal but in practice often have negligible eigenvalues, one particular advantage of the affine-invariant geometry is its existing 
extensions to symmetric positive semi-definite (SPSD) matrices (see Section 3.2).

Consider the set of symmetric matrices in ℝ𝑁×𝑁 , denoted by 𝑁 . A symmetric matrix 𝐖 ∈ 𝑁 is an SPD matrix if it has strictly 
positive eigenvalues. Let 𝑁 denote the set of all 𝑁 ×𝑁 SPD matrices. The tangent space at any point in this set is the space of 
symmetric matrices 𝑁 . We denote the tangent space at 𝐖 ∈ 𝑁 by 𝐖𝑁 . In this work we consider the following affine-invariant 
metric in the tangent space at each matrix 𝐖 ∈ 𝑁 , which forms a differentiable Riemannian manifold [56]:

⟨𝐃1,𝐃2⟩𝐖 =
⟨
𝐖−1∕2𝐃1𝐖−1∕2,𝐖−1∕2𝐃2𝐖−1∕2⟩ (1)

where 𝐃1, 𝐃2 ∈ 𝐖𝑁 denote matrices in the tangent space at 𝐖 ∈ 𝑁 and ⟨⋅, ⋅⟩ is given by the standard Frobenius inner product ⟨𝐀,𝐁⟩ = Tr
(
𝐀𝑇𝐁

)
. Using this metric, there is a unique geodesic path connecting any two matrices 𝐖1, 𝐖2 ∈ 𝑁 [10], which is 

explicitly given by:

𝛾𝐖1→𝐖2
(𝑝) =𝐖1∕2

1

(
𝐖−1∕2

1 𝐖2𝐖
−1∕2
1

)𝑝
𝐖1∕2

1 , 𝑝 ∈ [0,1]. (2)

The arc-length of this geodesic path defines the Riemannian distance on the manifold,

𝑑2
𝑅

(
𝐖1,𝐖2

)
=
‖‖‖‖log(𝐖−1∕2

1 𝐖2𝐖
−1∕2
1

)‖‖‖‖2𝐹 . (3)

Using the Fréchet mean, we define the Riemannian mean of a set of matrices, 𝐖1, … , 𝐖𝑛, by argmin𝐖∈𝑁

∑𝑛
𝑖=1𝑑

2
𝑅

(
𝐖,𝐖𝑖

)
. The 

Riemannian mean of two matrices is a special case, which coincides with the mid-point of the geodesic path connecting them and 
has the following closed form:

𝛾𝐖1→𝐖2
(1∕2) =𝐖1∕2

1

(
𝐖−1∕2

1 𝐖2𝐖
−1∕2
1

)1∕2
𝐖1∕2

1 (4)

The mapping between the Riemannian manifold of SPD matrices and its tangent space is given by the exponential map and the 
logarithmic map. Each matrix 𝐃 in the tangent space at 𝐖 ∈ 𝑁 can be seen as the derivative of the geodesic connecting 𝐖 and 
𝐖̃ = Exp𝐖(𝐃), i.e., 𝛾𝐖→𝐖̃(𝑝), at 𝑝 = 0. The exponential map in this setting has a known closed-form given by [56]:

Exp𝐖 (𝐃) =𝐖1∕2 exp
(
𝐖−1∕2𝐃𝐖−1∕2)𝐖1∕2, (5)

where Exp𝐖(𝐃) ∈ 𝑁 and exp(⋅) is applied to the eigenvalues. The inverse of the exponential map is the logarithmic map, which is 
explicitly given by:

Log𝐖(𝐖̃) =𝐖1∕2 log
(
𝐖−1∕2𝐖̃𝐖−1∕2)𝐖1∕2, (6)

where log(⋅) is applied to the eigenvalues, 𝐖̃ ∈ 𝑁 , and Log𝐖(𝐖̃) ∈ 𝐖𝑁 .

3.2. An extension to SPSD matrices

In practice, the matrices of interest are often not strictly positive, but rather symmetric positive semi-definite (SPSD) matrices, that 
is symmetric matrices with non-negative eigenvalues. Below is a summary of a Riemannian geometry introduced in [12] that extends 
the affine-invariant metric. We remark that the existence of such an extension serves as an additional motivation to particularly 
consider the affine-invariant metric over the alternatives.

Let +(𝑟, 𝑁) denote the set of 𝑁 ×𝑁 SPSD matrices of rank 𝑟 <𝑁 , and let 𝑁,𝑟 denote the set of 𝑁 × 𝑟 matrices with orthonormal 
columns, i.e. 𝐕𝑇𝐕 = I𝑟×𝑟, ∀𝐕 ∈ 𝑁,𝑟. Given an SPSD matrix 𝐖 ∈ +(𝑟, 𝑁), we consider the following decomposition:

𝐖 =𝐕𝚲𝐕𝑇 , (7)

where 𝐕 ∈ 𝑁,𝑟 and 𝚲 ∈ 𝑟. Consequently, the pair (𝐕,𝚲) ∈ 𝑁,𝑟 ×𝑟 can be considered as a representation of the matrix 𝐖. Based on 
this representation, the authors of [12] proposed to present vectors in the tangent space of + (𝑟,𝑁) at 𝐖, denoted by 𝐖+ (𝑟,𝑁), 
4
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by the infinitesimal variation (𝚫,𝐃), where 𝚫 = 𝐕⟂𝐁, 𝐕⟂ ∈ 𝑁,𝑁−𝑟, 𝐕⟂𝐕 = 0, 𝐁 ∈ ℝ(𝑁−𝑟)×𝑟 and 𝐃 ∈ 𝚲𝑟 = 𝑟. Using these tangent 
vectors, the metric on the tangent space of the SPSD manifold can be defined as a generalization of the metric on the manifold of 
SPD matrices:⟨(

𝚫1,𝐃1
)
,
(
𝚫2,𝐃2

)⟩
(𝐕,𝚲) = Tr

(
𝚫𝑇
1 𝚫2

)
+ 𝑘 ⟨𝐃1,𝐃2⟩𝚲 (8)

for some 𝑘 > 0, where 
(
𝚫1,𝐃1

)
, 
(
𝚫2,𝐃2

)
∈ 𝐖+ (𝑟,𝑁) and ⟨⋅, ⋅⟩𝚲 denotes the metric defined in (1) for SPD matrices.

Let 𝐖1 = 𝐕1𝚲1𝐕𝑇
1 and 𝐖2 = 𝐕2𝚲2𝐕𝑇

2 denote the decompositions of two SPSD matrices 𝐖1, 𝐖2 ∈ + (𝑟,𝑁), where 𝐕1, 𝐕2 ∈ 𝑁,𝑟

and 𝚲1, 𝚲2 ∈ 𝑟. The closed-form expression of the geodesic path connecting any two such matrices in + (𝑟,𝑁) using the metric in 
(8) is unknown. However, the following approximation of it was proposed in [12]. Denote the singular value decomposition (SVD) 
of 𝐕𝑇

2 𝐕1 by 𝐎2𝚺𝐎𝑇
1 , where 𝐎1, 𝐎2 ∈ℝ𝑟×𝑟 and diag(𝚺) are the cosines of the principal angles between range(𝐖1) and range(𝐖2), where 

range(𝐖) denotes the column space of 𝐖. Define 𝚯 = arccos (𝚺), which is a diagonal matrix of size 𝑟 × 𝑟 with the principal angles 
between the two subspaces on its diagonal. The approximation of the geodesic path connecting two points in + (𝑟,𝑁) is then given 
by:

𝛾̃𝐖1→𝐖2
(𝑝) =𝐔𝐖1→𝐖2

(𝑝)𝐑𝐖1→𝐖2
(𝑝)𝐔𝑇

𝐖1→𝐖2
(𝑝), 𝑝 ∈ [0,1] (9)

where 𝐑𝐖1→𝐖2
(𝑝) is the geodesic path connecting SPD matrices as defined in (2) calculated between the matrices 𝐑1 = 𝐎𝑇

1 𝚲1𝐎1
and 𝐑2 =𝐎𝑇

2 𝚲2𝐎2, i.e. 𝐑𝐖1→𝐖2
(𝑝) = 𝛾𝐑1→𝐑2

(𝑝), and 𝐔𝐖1→𝐖2
(𝑝) is the geodesic connecting range(𝐖1) and range(𝐖2) on the Grassman 

manifold (the set of 𝑟 dimensional subspaces of ℝ𝑁 ), defined by:

𝐔𝐖1→𝐖2
(𝑝) =𝐔1 cos (𝚯𝑝) +𝐗 sin (𝚯𝑝) (10)

where 𝐔1 =𝐕1𝐎1, 𝐔2 =𝐕2𝐎2 and 𝐗 =
(
I −𝐔1𝐔𝑇

1
)
𝐔2 (sin (𝚯))†, with (⋅)† denoting the Moore-Penrose pseudo-inverse.

3.3. Diffusion operator

As described in Section 2, most manifold learning methods, and particularly diffusion maps [18], are based on positive kernel 
matrices. Here, we briefly present the construction of such a kernel, which we term the diffusion operator, as proposed in [18]. In 
the sequel, we employ this diffusion operator in our framework to recover the geometry underlying each modality.

Given a set of 𝑁 points, {𝐱[𝑖]}𝑁
𝑖=1, which are sampled from some hidden manifold  embedded in ℝ𝑛, consider the following 

affinity kernel matrix 𝐊 ∈ℝ𝑁×𝑁 , whose (𝑖, 𝑗)th entry is given by:

K[𝑖, 𝑗] = exp

(
−
‖𝐱[𝑖] − 𝐱[𝑗]‖22

𝜎2

)
, (11)

where ‖⋅‖2 denotes the 𝓁2 norm and 𝜎 denotes the kernel scale, typically set to the median of the Euclidean distances between the 
sample points multiplied by some scalar. By Bochner’s theorem, 𝐊 is an SPD matrix. The kernel is normalized twice according to:

𝐖 = 𝐃̂−1 𝐊 𝐃̂−1

𝐖 =𝐃−1∕2 𝐖 𝐃−1∕2, (12)

where 𝐃̂ and 𝐃 are diagonal matrices with D̂[𝑖, 𝑖] =∑𝑁
𝑗=1 K[𝑖, 𝑗] and D[𝑖, 𝑖] =∑𝑁

𝑗=1 Ŵ[𝑖, 𝑗], respectively.

The matrix 𝐖 defined in (12) is similar to the diffusion operator considered in [18], which we call the diffusion maps operator 
for simplicity, with a normalization that removes the point density influence, given by 𝐖DM = 𝐃−1𝐖. Due to this similarity, the 
matrix 𝐖 and the diffusion maps operator 𝐖DM share the same eigenvalues and their eigenvectors are related by 𝜓DM = 𝐃−1∕2𝜓 and 
𝜓̃DM =𝐃1∕2𝜓 , where 𝜓 denotes an eigenvector of 𝐖 and 𝜓𝐷𝑀 and 𝜓̃DM denote the right and left eigenvectors of 𝐖DM, respectively.

4. Riemannian multi-resolution analysis

We are ready to present our multi-resolution framework for multivariate time-series analysis from a manifold learning perspective. 
In this section, we focus on the algorithmic aspect, and in Section 6 we present the theoretical justification. We start by introducing 
the Riemannian composition of two operators that capture the relationship between two datasets sampled from two underlying 
diffeomorphic manifolds. Then, we generalize the setting to a sequence of datasets in time by presenting a wavelet-like analysis 
using the composite operators. Finally, we conclude this section with important implementation remarks.

4.1. Riemannian composition of two operators

Consider two datasets of 𝑁 points denoted by {𝐱1[𝑖]}𝑁𝑖=1, {𝐱2[𝑖]}
𝑁
𝑖=1. Suppose there is some correspondence between the datasets 

and that they are ordered according to this correspondence, i.e., the two points 𝐱1[𝑖] and 𝐱2[𝑖] correspond. Such a correspondence 
could be the result of simultaneous recording from two, possibly different, sensors. We aim to recover the common structures 
in these datasets and characterize their expression in each dataset. Specifically, we consider two types of common components: 
common components that are expressed similarly in the two datasets and common components that are expressed differently.
5
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Fig. 1. Illustration of the definitions of the operators 𝐒 and 𝐅. (a) Illustration of the operator 𝐒 (blue point) on the geodesic path (solid line in magenta) connecting 
𝐖1 and 𝐖2 (magenta points) on the manifold of SPD matrices (gray surface represents one level-set of the Riemannian manifold of SPD matrices). The dashed gray 
line denotes the shortest Euclidean path connecting the two matrices. (b) Illustration of the operator 𝐅 (cyan point) on the tangent space at 𝐒 (colored plane). Both 
plots present the same region in different orientations. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

To this end, we propose a two-step method. First, we assume that each dataset lies on some manifold and we characterize its 
underlying geometry using a diffusion operator constructed according to (12). This results in two SPD matrices denoted by 𝐖1 and 
𝐖2 (see Section 3.1). Then, we propose to “fuse” the two datasets by considering compositions of 𝐖1 and 𝐖2 based on Riemannian 
geometry. In contrast to most previous studies that consider linear combinations involving addition, subtraction, and multiplication, 
e.g., [47,51,68], which often results in non-symmetric or non-positive matrices violating the fundamental geometric structure of 
diffusion operators, our Riemannian compositions yield symmetric and SPD matrices. Specifically, we define two operators by:

𝐒𝑝 =𝐖1#𝑝𝐖2 =𝐖1∕2
1

(
𝐖−1∕2

1 𝐖2𝐖
−1∕2
1

)𝑝
𝐖1∕2

1 , (13)

𝐅𝑝 = Log𝐒𝑝
(
𝐖1

)
= 𝐒1∕2𝑝 log

(
𝐒−1∕2𝑝 𝐖1𝐒

−1∕2
𝑝

)
𝐒1∕2𝑝 , (14)

where 0 ≤ 𝑝 ≤ 1 denotes the position along the geodesic path connecting 𝐖1 and 𝐖2 on the SPD manifold, 𝐖1#𝑝𝐖2 with 𝑝 = 1∕2
denotes the midpoint on this geodesic, and Log𝐒𝑝

(
𝐖1

)
denotes the logarithmic map, projecting the matrix 𝐖1 onto the tangent space 

of the SPD manifold at point 𝐒𝑝 =𝐖1#𝑝𝐖2. The parameter 𝑝 can be used to incorporate prior knowledge on the expected importance 
of each dataset, e.g., if we expect that the information in the first dataset is more meaningful, less noisy for example, we can set 
0 < 𝑝 < 1∕2. See [42] for a more extensive analysis of the effect of 𝑝. Note that a similar definition of the operator 𝐒𝑝 was previously 
used with diffusion operators in [42] and analyzed in the context of multimodal data processing. In this work, we additionally define 
and analyze a new operator, 𝐅𝑝, and then use both operators to construct the Riemannian multi-resolution analysis framework. Fig. 1

presents an illustration of the definitions of the operators on the Riemannian manifold of SPD matrices and its tangent space.

Intuitively, 𝐒𝑝 describes the mean of the two matrices, so it enhances the components that are expressed similarly; that is, common 
eigenvectors with similar eigenvalues. Conversely, 𝐅𝑝 can be seen as the difference of 𝐒𝑝 and 𝐖1 along the geodesic connecting them, 
and therefore, it is related to the components expressed differently; that is, the common eigenvectors with different eigenvalues. In 
Section 6 we provide a theoretical justification for the above statements. Note that a recent work [20] defined an operator analogous 
to 𝐒𝑝, as the exponent of a linear combination of multiple normalized Laplacians of different graphs with shared vertices. This also 
results in an SPD operator that can be interpreted as representing the average diffusion on the common set of vertices. However, 
in the context of our work, which aims to define a multi-resolution wavelet-like framework for time-varying manifolds, this setting 
lacks a natural formulation of differences between graphs or datasets.

We remark that 𝐅𝑝 is symmetric but not positive-definite, since it is defined as a projection of an SPD matrix onto the tangent 
space, and that using 𝐖2 instead of 𝐖1 in the projection leads only to a change of sign. In addition, given 𝐒𝑝 and 𝐅𝑝, both SPD 
matrices 𝐖1 and 𝐖2 can be reconstructed using the exponential map Exp𝐒𝑝

(
±𝐅𝑝

)
(as defined in (5)). For simplicity of notations, we 

focus in the following on 𝐅𝑝 and 𝐒𝑝 with 𝑝 = 0.5 and omit the notation of 𝑝. The extension to other values of 𝑝 is straightforward.

In the second step, we propose new embeddings of the data points, representing the common components between the two 
datasets based on the operators 𝐒 and 𝐅. Since both operators are symmetric, their eigenvalues and eigenvectors are real, and 
the eigenvectors are orthogonal. Denote the eigenvalues and eigenvectors of the operator 𝐒 by 𝜆(𝐒)𝑛 and 𝜓 (𝐒)

𝑛 , respectively, and the 
eigenvalues and eigenvectors of the operator 𝐅 by 𝜆(𝐅)𝑛 and 𝜓 (𝐅)

𝑛 , respectively, where 𝑛 = 1, … , 𝑁 . The new embeddings are constructed 
based on the eigenvectors of 𝐒 and 𝐅 by taking the 𝑀 ≤𝑁 leading eigenvectors, i.e. eigenvectors that correspond to the 𝑀 largest 
eigenvalues (in absolute value for 𝐅), which are organized in decreasing order 𝜆(𝐒)1 ≥ 𝜆

(𝐒)
2 ≥⋯ ≥ 𝜆

(𝐒)
𝑀

and 𝜆(𝐅)1 ≥ 𝜆
(𝐅)
2 ≥⋯ ≥ 𝜆

(𝐅)
𝑀

. The 
new embeddings are defined by:

(𝐱1[𝑖],𝐱2[𝑖])↦Ψ(𝐒)[𝑖] =
{
𝜓

(𝐒)
1 [𝑖],… , 𝜓

(𝐒)
𝑀

[𝑖]
}

(15)

(𝐱1[𝑖],𝐱2[𝑖])↦Ψ(𝐅)[𝑖] =
{
𝜓

(𝐅)
1 [𝑖],… , 𝜓

(𝐅)
𝑀

[𝑖]
}
. (16)

Algorithm 1 summarizes the above two-step operator and embedding construction. In Section 5.1, we demonstrate the properties 
of the operators 𝐒 and 𝐅 and the proposed embeddings on an illustrative toy example. In Section 6, we present some analysis.
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As a final remark, we note that other SPD kernels and matrices may be considered instead of the proposed diffusion operators, 
e.g. covariance or correlation matrices, which can simply substitute 𝐖1 and 𝐖2 in the above definitions.

Algorithm 1 Operator composition and spectral embedding based on Riemannian geometry.

Input: Two datasets {𝐱1[𝑖]}𝑁𝑖=1 , {𝐱2[𝑖]}𝑁𝑖=1 ; the embedding dimension 𝑀
Output: Operators 𝐒 and 𝐅 and new embeddings 𝚿(𝐒) and 𝚿(𝐅)

1: Construct a diffusion operator for each dataset, 𝐖𝓁 ∈ℝ𝑁×𝑁 , 𝓁 = 1, 2, according to (11) and (12)

2: Build operators 𝐒 and 𝐅:

3: 𝐒 =𝐖1∕2
1

(
𝐖−1∕2

1 𝐖2𝐖
−1∕2
1

)1∕2
𝐖1∕2

1

4: 𝐅 = 𝐒1∕2 log
(
𝐒−1∕2𝐖1𝐒−1∕2

)
𝐒1∕2

5: Compute the eigenvalue decomposition of the operators 𝐒 and 𝐅

6: Take the 𝑀 largest eigenvalues (in absolute value) and order them such that 𝜆(𝐒)1 ≥ 𝜆
(𝐒)
2 ≥⋯ ≥ 𝜆

(𝐒)
𝑀

and 𝜆(𝐅)1 ≥ 𝜆
(𝐅)
2 ≥⋯ ≥ 𝜆

(𝐅)
𝑀

7: Take the corresponding 𝑀 eigenvectors of 𝐒 and define:

8: 𝚿(𝐒) =
{
𝜓

(𝐒)
1 ,… , 𝜓

(𝐒)
𝑀

}
∈ℝ𝑁×𝑀 ⊳ Capture similarly expressed common components

9: Take the corresponding 𝑀 eigenvectors of 𝐅 and define:

10: 𝚿(𝐅) =
{
𝜓

(𝐅)
1 ,… , 𝜓

(𝐅)
𝑀

}
∈ℝ𝑁×𝑀 ⊳ Capture differently expressed common components

4.2. Operator-based analysis of a sequence of datasets

Let {x𝑡[𝑖]}𝑁𝑖=1 denote a temporal sequence of datasets, where 𝑡 = 1, … , 𝑇 = 2𝑚, 𝑚 ∈ ℕ, denotes time, and x𝑡[𝑖] ∈ℝ𝑑 is the 𝑖-th point 
sampled at time 𝑡. Considering first just two consecutive datasets {x𝑡[𝑖]}𝑁𝑖=1 and {x𝑡+1[𝑖]}𝑁𝑖=1 is analogous to the setting presented in 
Section 4.1. Applying the same analysis gives rise to the operators 𝐒 and 𝐅 corresponding to {x𝑡[𝑖]}𝑁𝑖=1 and {x𝑡+1[𝑖]}𝑁𝑖=1, which facilitate 
the extraction of the two types of underlying common components. Unlike the general setting in Section 4.1, the temporal order of 
the two datasets considered here allows us to view the common components that are expressed similarly and extracted by 𝐒 as the 
slowly changing components. Similarly, the common components that are expressed differently and extracted by 𝐅 are considered as 
rapidly changing components.

The above description constitutes the basic building block of our analysis. With that in mind, we proceed to the construction of 
the proposed multi-resolution analysis of the entire sequence. At the first step, we build a diffusion operator according to (12) for the 
dataset {x𝑡[𝑖]}𝑁𝑖=1 at each time point 𝑡, resulting in 𝑇 kernels 𝐖𝑡 ∈ℝ𝑁×𝑁 , 𝑡 = 1, … , 𝑇 . Then, for every pair of consecutive time-points, 
(2𝑡 −1, 2𝑡), 𝑡 = 1, … , 𝑇 ∕2, we construct the two operators2 𝐒(1)𝑡 and 𝐅(1)

𝑡 according to (13) and (14) with 𝑝 = 0.5. These 2 ×𝑇 ∕2 operators 
represent the fine level, denoted 𝓁 = 1, of the multi-resolution framework and recover components which are common to consecutive 
time-frames. At coarser (higher) levels, i.e. for 𝓁 > 1, the operators are constructed according to (13) and (14) (with 𝑝 = 0.5) using 
the operators from the previous level as input. Specifically, at level 𝓁 > 1, the operators are given by

𝐒(𝓁)𝑡 = 𝐒(𝓁−1)2𝑡−1 #𝐒(𝓁−1)2𝑡 (17)

𝐅(𝓁)
𝑡 = Log𝐒(𝓁)𝑡

(
𝐒(𝓁−1)2𝑡−1

)
, (18)

where 𝑡 = 1, … , 𝑇 ∕2𝓁 and 𝓁 = 2, … , log2 𝑇 . At each level, only the operator 𝐒 is used to construct the operators of the next level. The 
reason for this construction choice is that 𝐒 enhances similarly expressed common components. In the present setting, the similarly 
expressed common components of consecutive time frames are in fact components that change slowly in time. Therefore, using the 
operators 𝐒(𝓁−1)𝑡 , 𝑡 = 1, … , 𝑇 ∕2𝓁−1, to construct the operators of the coarser level, 𝓁, has a smoothing effect. This is analogous to the 
construction of the ordinary wavelet decomposition, where the outputs of the low-pass filters at each level are used as inputs to the 
coarser level. In this analogy, the operator 𝐅(𝓁)

𝑡 can be viewed as a high-pass filter, since it enhances components that are expressed 
significantly different in consecutive time frames, i.e. rapidly changing components.

Similarly to the embedding defined based on 𝐒 and 𝐅 in Subsection 4.1, we define an embedding based on the eigenvectors of the 

operators 𝐒(𝓁)𝑡 and 𝐅(𝓁)
𝑡 at different levels and time-frames. Denote the eigenvalues and eigenvectors of the operator 𝐒(𝓁)𝑡 by 𝜆(𝐒

(𝓁)
𝑡 )

𝑛 and 

𝜓
(𝐒(𝓁)𝑡 )
𝑛 , respectively, and the eigenvalues and eigenvectors of the operator 𝐅(𝓁)

𝑡 by 𝜆(𝐅
(𝓁)
𝑡 )

𝑛 and 𝜓 (𝐅(𝓁)𝑡 )
𝑛 , respectively, where 𝑛 = 1, … , 𝑁

and the eigenvalues are ordered in decreasing magnitude. The embedding at each level and each time frame is then defined by taking 
the 𝑀 ≤𝑁 leading eigenvectors of the operators as follows:

𝐱𝑡[𝑖]→Ψ(𝐒(𝓁)𝑡 ) =
{
𝜓

(𝐒(𝓁)𝑡 )
1 [𝑖],… , 𝜓

(𝐒(𝓁)𝑡 )
𝑀

[𝑖]
}

(19)

2 Note that the operator underscore notation now denotes the time index rather than the geodesic curve parameter 𝑝 as in Section 4.1.
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𝐱𝑡[𝑖]→Ψ(𝐅(𝓁)𝑡 ) =
{
𝜓

(𝐅(𝓁)𝑡 )
1 [𝑖],… , 𝜓

(𝐅(𝓁)𝑡 )
𝑀

[𝑖]
}

, (20)

where 𝑡 = 1, … , 𝑇 ∕2𝓁 and 𝓁 = 2, … , log2 𝑇 . These embedding coordinates capture the slowly varying components (Ψ(𝐒(𝓁)𝑡 )) and fast 
varying components (Ψ(𝐅(𝓁)𝑡 )) at each time frame 𝑡 and each level 𝓁.

The proposed algorithm is summarized in Algorithm 2.

Algorithm 2 Riemannian multi-resolution analysis algorithm.

Input: A time-varying dataset {x𝑡[𝑖]}𝑁𝑖=1 , x𝑡[𝑖] ∈ℝ𝑑 , 𝑡 = 1, … , 𝑇 .

Output: Operators {𝐒(𝓁)𝑡 , 𝐅(𝓁)
𝑡 }𝑇 ∕2

𝓁

𝑡=1 and new representations for each level

{𝚿(𝐒(𝓁)𝑡 ) , 𝚿(𝐅(𝓁)
𝑡 )}𝑇 ∕2

𝓁

𝑡=1 , where 𝓁 = 1, … , log2 𝑇

1: Construct an SPD kernel representing each time point 𝑡, denoted by {𝐖𝑡}𝑇𝑡=1 , according to (12).

2: for 𝑡 = 1 ∶ 𝑇 ∕2 do ⊳ Construct the operators for level 1
3: 𝐒(1)𝑡 =𝐖2𝑡−1#0.5𝐖2𝑡
4: 𝐅(1)

𝑡 = Log𝐒(1)𝑡

(
𝐖2𝑡−1

)
5: end for

6: for 𝓁 = 2 ∶ log2 𝑇 do ⊳ Construct the operators for level 𝓁
7: for 𝑡 = 1 ∶ 𝑇 ∕2𝓁 do

8: 𝐒(𝓁)𝑡 = 𝐒(𝓁−1)2𝑡−1 #0.5𝐒
(𝓁−1)
2𝑡

9: 𝐅(𝓁)
𝑡 = Log𝐒(𝓁)𝑡

(
𝐒(𝓁−1)2𝑡−1

)
10: end for

11: end for

12: for 𝓁 = 1 ∶ log2 𝑇 do ⊳ Construct the new representations

13: for 𝑡 = 1 ∶ 𝑇 ∕2𝓁 do

14: Ψ(𝐒(𝓁)𝑡 ) =
[
𝜓

(𝐒(𝓁)𝑡 )
1 ,… , 𝜓

(𝐒(𝓁)𝑡 )
𝑀

]
15: Ψ(𝐅(𝓁)

𝑡 ) =
[
𝜓

(𝐅(𝓁)
𝑡 )

1 ,… , 𝜓
(𝐅(𝓁)

𝑡 )
𝑀

]
16: where 𝜓 (𝐒(𝓁)𝑡 ) and 𝜓 (𝐅(𝓁)

𝑡 ) are the eigenvectors of 𝐒(𝓁)𝑡 and 𝐅(𝓁)
𝑡 .

17: end for

18: end for

4.3. Implementation remarks

The numerical implementation of the proposed algorithm, particularly the Riemannian composition of operators, needs some 
elaboration. While the diffusion operators we consider in (12) are SPD matrices by definition, in practice, some of their eigenvalues 
could be close to zero numerically, forming in effect SPSD matrices instead. In order to address this issue, we propose an equivalent 
definition of the operators 𝐒 and 𝐅 for SPSD matrices of fixed rank, based on the Riemannian metric and mean that were introduced 
in [12].

Based on the approximated geodesic path in (9), we define the operators 𝐒 and 𝐅 for SPSD matrices as follows. First, define

𝐒 = 𝛾̃𝐖1→𝐖2
(0.5) =𝐔𝐖1→𝐖2

(0.5)
(
𝐑1#0.5𝐑2

)
𝐔𝑇
𝐖1→𝐖2

(0.5) . (21)

Next, evaluate 𝐕𝑇
1 𝐕𝐒 = 𝐎𝐒𝚺̃𝐎̃𝑇

1 by SVD, where 𝚲𝐒 and 𝐕𝐒 denote the eigenvalues and eigenvectors of 𝐒, respectively. Also, define 
𝐑𝐒 ∶=𝐎𝑇

𝐒 𝚲𝐒𝐎𝐒. Then, define

𝐅 =𝐔𝐒→𝐖1
(1)Log𝐑𝐒

(
𝐎̃𝑇

1 𝚲1𝐎̃1
)
𝐔𝑇
𝐒→𝐖1

(1) (22)

where 𝐔𝐒→𝐖1
(𝑝) is defined for matrices 𝐒 and 𝐖1 correspondingly to (10) and the derivations leading to it. Intuitively, this can be 

viewed as applying the operators 𝐒 and 𝐅 to matrices expressed in the bases associated with the non-trivial SPD matrices of rank 𝑟, 
and then projecting the resulting operators back to the original space of SPSD matrices by applying 𝐔𝐖1→𝐖2

(𝑝).
A summary of this derivation is presented in Algorithm 3. A demonstration of the properties of these new operators for SPSD 

matrices using a simple simulation of 4 ×4 matrices, similar to the one presented in Subsection 5.1 but with matrices of rank 3, could 
be found in Section 5.2.

5. Experimental results

In this section, we demonstrate the operators 𝐒 and 𝐅 on 3 examples. In Subsection 5.1 and Subsection 5.2, we present a toy 
example demonstrating the spectral properties of 𝐒 and 𝐅. These examples simulate Theorem 1 and Theorem 2. In Subsection 5.3, we 
apply our multi-resolution framework defined in Subsection 4.2, which is based on 𝐒 and 𝐅, to a 2D dynamical system. In Subsection 
5.4, the operators 𝐒 and 𝐅 are applied to hyperspectral and LiDAR images to demonstrate their multimodal capabilities. Additional 
8
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Algorithm 3 Implementation of the operators for SPSD matrices.

Input: Two datasets with point correspondence {𝐱1[𝑖], 𝐱2[𝑖]}𝑁𝑖=1
Output: Operators 𝐒 and 𝐅 and their eigenvectors: 𝚿(𝐒), 𝚿(𝐅)

1: function SPSD-GEODESICS(𝐆1, 𝐆2 , 𝑝) ⊳ As defined in [12]

2: Set 𝑟 =min
{
rank

(
𝐆1

)
, rank

(
𝐆2

)}
.

3: for 𝑖 ∈ [1, 2] do

4: Set 𝐆𝑖 =𝐕𝑖𝚲𝑖𝐕𝑇
𝑖

⊳ Eigenvalue decomposition

5: Set 𝐕̃𝑖 =𝐕𝑖(∶, 1 ∶ 𝑟)
6: Set 𝚲̃𝑖 =𝚲𝑖(1 ∶ 𝑟, 1 ∶ 𝑟)
7: end for

8: Set [𝐎1 , 𝚺, 𝐎2] = SVD
(
𝐕̃𝑇

2 𝐕̃1
)

9: Set 𝚯 = arccos(𝚺)
10: for 𝑖 ∈ [1, 2] do

11: Set 𝐔𝑖 = 𝐕̃𝑖𝐎𝑖

12: Set 𝐑𝑖 =𝐎𝑇
𝑖
𝚲̃𝑖𝐎𝑖

13: end for

14: Compute 𝐔𝐆1→𝐆2
(𝑝) ⊳ According to (10)

15: Compute 𝐑𝐆1→𝐆2
(𝑝) =𝐑1∕2

1

(
𝐑−1∕2

1 𝐑2𝐑
−1∕2
1

)𝑝

𝐑1∕2
1

16: return 𝐔𝐆1→𝐆2
(𝑝), 𝐑𝐆1→𝐆2

(𝑝), 𝐑𝐆1
, 𝐑𝐆2

17: end function

18: function MAIN

19: Construct SPSD matrices for the two datasets 𝐖1 and 𝐖2 ⊳ According to (12)

20: SPSD-GEODESICS(𝐖1, 𝐖2 , 0.5)

21: 𝐒 =𝐔𝐖1→𝐖2
(0.5)𝐑𝐖1→𝐖2

(0.5)𝐔𝑇
𝐖1→𝐖2

(0.5)

22: SPSD-GEODESICS(𝐒, 𝐖1, 1)

23: 𝐅 =𝐔𝐒→𝐖1
(1)Log𝐑𝐒

(
𝐑𝐖1

)
𝐔𝑇

𝐒→𝐖1
(1) ⊳ Log⋅(⋅) is defined as in (6)

24: end function

results demonstrating the properties of the operators 𝐒 and 𝐅 appear in Appendix B. In all experiments in the paper, we set 𝑝 = 1∕2
in order to maintain an equal influence of the different datasets and modalities. The code for the experiments is available on GitHub.

5.1. Illustrative toy example: SPD case

We demonstrate the properties of the composite operators 𝐒 and 𝐅, constructed in Algorithm 1, using a simple simulation of 4 ×4
matrices. Define two matrices, 𝐌1 =𝚿𝚲(1)𝚿𝑇 and 𝐌2 =𝚿𝚲(2)𝚿𝑇 , with the following common eigenvectors:

𝚿 =
[
𝜓1, 𝜓2, 𝜓3, 𝜓4

]
= 1

2

⎡⎢⎢⎢⎢⎣
1, 1, 1, 1
1, 1,−1,−1
1,−1,−1, 1
1,−1, 1,−1

⎤⎥⎥⎥⎥⎦
(23)

and the following eigenvalues:

𝚲(1) = diag
([

𝜆
(1)
1 , 𝜆

(1)
2 , 𝜆

(1)
3 , 𝜆

(1)
4

])
= diag([0.5, 1, 0.01, 0.2]) (24)

𝚲(2) = diag
([

𝜆
(2)
1 , 𝜆

(2)
2 , 𝜆

(2)
3 , 𝜆

(2)
4

])
= diag([0.01, 1, 0.5, 0.2]) (25)

In this example, 𝜓1 is a common eigenvector that is dominant in 𝐌1 and weak in 𝐌2, 𝜓3 is a common eigenvector that is dominant 
in 𝐌2 and weak in 𝐌1 and 𝜓2 and 𝜓4 are common eigenvectors that are similarly expressed in both 𝐌1 and 𝐌2.

We construct the operators 𝐒 =𝐌1#𝐌2 and 𝐅 = Log𝐒
(
𝐌1

)
and compute their eigenvalues and eigenvectors. Fig. 2 presents the 

4 eigenvalues of 𝐌1, 𝐌2, 𝐒 and 𝐅, denoted by {𝜆(1)𝑛 }4
𝑛=1, {𝜆

(2)
𝑛 }4

𝑛=1, {𝜆
(𝐒)
𝑛 }4

𝑛=1 and {𝜆(𝐅)𝑛 }4
𝑛=1, respectively, in the left plots, and the 

corresponding eigenvectors in the right plots. This figure depicts that the two matrices 𝐌1 and 𝐌2 share the same 4 eigenvectors (as 
defined) and that the resulting eigenvectors of 𝐒 and 𝐅 are similar to these 4 eigenvectors. Note that eigenvectors 2 and 4 of operator 
𝐅 are not identical to the eigenvectors of 𝐌1 and 𝐌2 due to numerical issues, which arise since these eigenvectors in 𝐅 correspond to 
negligible eigenvalues. The left plots show that the eigenvalues of 𝐒 and 𝐅 capture the similarities and differences in the expression 
of the spectral components of 𝐌1 and 𝐌2. Specifically, since 𝜆(1)2 = 𝜆

(2)
2 and 𝜆(1)4 = 𝜆

(2)
4 , the corresponding eigenvalues of 𝐒 assume 

the same magnitude. In contrast, due to this equality, these eigenvalues correspond to negligible eigenvalues of 𝐅. The two other 
eigenvectors, 𝜓1 and 𝜓3, correspond to eigenvalues that differ by an order of magnitude in the two matrices and are therefore the 
most dominant components in 𝐅. In addition, note the opposite sign of eigenvalues 𝜆(𝐅)1 and 𝜆(𝐅)3 , which indicates the source of the 
more dominant component, i.e. whether 𝜆(1)𝑛 > 𝜆

(2)
𝑛 or 𝜆(1)𝑛 <𝜆

(2)
𝑛 . These properties are proved and explained in more detail in Section 6.
9
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Fig. 2. Application of 𝐒 and 𝐅 to two 4 × 4 matrices with identical eigenvectors.

Fig. 3. Application of the operators 𝐒 and 𝐅 for SPSD matrices to two 4 × 4 matrices of rank 3 with identical eigenvectors.

5.2. Illustrative toy example: SPSD case

Consider two matrices, 𝐌1 =𝚿𝚲(1)𝚿𝑇 and 𝐌2 =𝚿𝚲(2)𝚿𝑇 , with 𝚿 defined in (23) and the following eigenvalues:

𝚲(1) = diag
([

𝜆
(1)
1 , 𝜆

(1)
2 , 𝜆

(1)
3 , 𝜆

(1)
4

])
= diag([0.5, 1, 0.01, 0]) (26)

𝚲(2) = diag
([

𝜆
(2)
1 , 𝜆

(2)
2 , 𝜆

(2)
3 , 𝜆

(2)
4

])
= diag([0.01, 1, 0.5, 0]) (27)

Note that the 4th eigenvalue is zero in both matrices resulting in SPSD matrices of rank 3.

We construct the operators 𝐒 and 𝐅 according to Algorithm 3 and compute their eigenvalues and eigenvectors. The results are 
presented in Fig. 3. Same as Fig. 2, Fig. 3 presents in the left plots the 4 eigenvalues of 𝐌1, 𝐌2, 𝐒 and 𝐅, denoted by {𝜆(1)𝑛 }4

𝑛=1, {𝜆
(2)
𝑛 }4

𝑛=1, 
{𝜆(𝐒)𝑛 }4

𝑛=1 and {𝜆(𝐅)𝑛 }4
𝑛=1, respectively, and the corresponding eigenvectors in the right plots. Both matrices, 𝐌1 and 𝐌2, share the same 

4 eigenvectors as depicted in the right plots, and the resulting eigenvectors of 𝐒 and 𝐅 are similar to these 4 eigenvectors. In this 
example, 𝜓2 is a dominant component in both 𝐌1 and 𝐌2 with the same large eigenvalue. Therefore, similarly to the SPD case, 
the eigenvalue of 𝐒 associated with this eigenvector remains large, whereas the eigenvalue of 𝐅 associated with this eigenvector is 
negligible, as expected. In contrast, 𝜓1 and 𝜓3 are eigenvectors that are differently expressed in the two matrices (corresponding to 
eigenvalues 0.5 and 0.01), and therefore, they correspond to dominant eigenvalues in 𝐅. The left plot demonstrates that this behavior 
is indeed captured by the operators 𝐒 and 𝐅 for SPSD matrices. Moreover, the eigenvalues of the operators 𝐒 and 𝐅 for SPSD matrices 
are equal to the eigenvalues that were obtained by the operators for SPD matrices in a corresponding toy example, presented in 
Fig. 2. Note that all eigenvalues that correspond to 𝜓4 are very close to zero, as expected due to the definition of the matrices 𝐌1
and 𝐌2.
10
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5.3. Transitory double gyre flow

To demonstrate the proposed Riemannian multi-resolution analysis described in Section 4, we consider a variation of the transitory 
double gyre flow presented in [34,57].

We simulate a 2D dynamical system with coordinates (𝑥𝑡, 𝑦𝑡) using the following equations:

𝑥̇𝑡 = − 𝜕

𝜕𝑦𝑡
𝐻

(
𝑥𝑡, 𝑦𝑡, 𝑡

)
(28)

𝑦̇𝑡 =
𝜕

𝜕𝑥𝑡
𝐻

(
𝑥𝑡, 𝑦𝑡, 𝑡

)
(29)

with the function:

𝐻
(
𝑥𝑡, 𝑦𝑡, 𝑡

)
= (1 − 𝑔(𝑡))𝐻1

(
𝑥𝑡, 𝑦𝑡

)
+ 𝑔(𝑡)𝐻2

(
𝑥𝑡, 𝑦𝑡

)
(30)

𝐻1
(
𝑥𝑡, 𝑦𝑡

)
= 𝑐1 sin(2𝜋𝑥𝑡) sin(𝜋𝑦𝑡) (31)

𝐻2
(
𝑥𝑡, 𝑦𝑡

)
= 𝑐2 sin(𝜋𝑥𝑡) sin(2𝜋𝑦𝑡) (32)

𝑔(𝑡) = 𝑡2(3 − 2𝑡), (33)

where 𝑐1 = 2, 𝑐2 = 10, 𝑖 = 1, ..., 𝑁 and 𝑡 ∈ [0, 1].
These equations describe a double gyre pattern, which is horizontal at 𝑡 = 0 and transitions into a vertical double gyre pattern 

at 𝑡 = 1. Note that in our simulations we add the parameters 𝑐1 and 𝑐2 to the dynamics, which lead to a change in rate between the 
(slower) horizontal and (faster) vertical double gyre patterns. These parameters are added in order to demonstrate the time-varying 
multi-resolution properties of our analysis.

We generate 𝑁 = 2500 trajectories with initial values uniformly distributed in 
(
𝑥0, 𝑦0

)
∈ [0, 1] × [0, 1], where each trajectory has 

𝑇 = 256 time points on a discrete uniform time-grid with a step size of Δ𝑡 = 1∕256. We denote each of these trajectories with an index 
𝑖 = 1, … , 𝑁 by a matrix 𝐱[𝑖] ∈ ℝ2×𝑇 , whose columns are the pair of time samples (𝑥𝑡[𝑖], 𝑦𝑡[𝑖])𝑇 . A short GIF file demonstrating the 
resulting trajectories is available on GitHub, where each point is colored according to its initial location along the x-axis to illustrate 
the point movement in time. The point movement demonstrated in this GIF exhibits two main structures: (i) points that rotate in 
two circular structures (transitioning from a horizontal setting into a vertical setting), which can be described as almost-invariant 
(coherent) sets as defined and captured by [34], and (ii) points that are located on the boundary of these almost-invariant sets and 
their movement changes significantly over time. Our goal in this example is to analyze these two movement types and to recover 
their different trajectories over time.

For this purpose, we construct an SPD kernel for each time frame 𝑡, denoted by 𝐖𝑡 ∈ ℝ𝑁×𝑁 , according to (12) based on the 
distances between the points in that time frame, i.e., ‖‖(𝑥𝑡[𝑖] − 𝑥𝑡[𝑗], 𝑦𝑡[𝑖] − 𝑦𝑡[𝑗])‖‖22, 𝑖, 𝑗 = 1, … , 𝑁 , with 𝜎 set to 0.5 times the median 
of these distances. We then apply Algorithm 2 and obtain the multi-resolution representation and 𝓁 = log2(𝑇 ) = 8 levels of operators. 
We denote the operators of different levels and different time frames by 𝐒(𝓁)𝑟 ∈ ℝ𝑁×𝑁 and 𝐅(𝓁)

𝑟 ∈ ℝ𝑁×𝑁 , where 𝓁 = 1, … , 8 and 
𝑟 = 1, … , 𝑇 ∕2𝓁 . Note that 𝑟 is associated with the time-frame indices, e.g., at level 𝓁 = 6, 𝑟 = ⌈𝑡∕2𝓁⌉ = 3 corresponds to time points 
𝑡 = 129, … , 192.

In the following, we focus on the second eigenvector of 𝐒(𝓁)𝑟 and show that it indeed captures the common components and com-

mon trajectory behavior at the different operator levels. Fig. 4 presents the data-points colored according to the second eigenvector of 
𝐒(𝓁)𝑟 , denoted by 𝜓 (𝐒(𝓁)𝑟 )

2 at levels 𝓁 = 8, 𝓁 = 4 and 𝓁 = 3 and with 𝑟 values corresponding to different time frames. Each time frame con-

tains 2𝓁 time points. For visualization of the time frames, in the plots in Fig. 4 we present 8 evenly spaced time points from the entire 
time frame. The locations of the 𝑁 = 2500 points are presented at each of the 8 time points and colored by the eigenvector describing 
the entire time frame. For example, Fig. 4 (a) presents the time frame of level 𝓁 = 8, which covers the entire trajectory, containing 
28 = 256 time points. In this plot, we present the locations of the 𝑁 = 2500 point at time points 𝑡 = 0, 32, 64, 96, 128, 160, 192, 224, and 

the points are colored according to 𝜓 (𝐒(8)1 )
2 . Note that 𝜓 (𝐒(8)1 )

2 describes the entire time frame [0, 255], and that the changes along time 
in Fig. 4 (a), for example, are only due to the displacement of the points. In the plots in Fig. 4, each data point is colored according 

to its value in: (a) 𝜓 (𝐒(8)1 )
2 , (b) 𝜓 (𝐒(4)4 )

2 , (c) 𝜓
(𝐒(4)10 )
2 , (d) 𝜓 (𝐒(3)7 )

2 and (e) 𝜓
(𝐒(3)8 )
2 . Note that Fig. 4 (d) and Fig. 4 (e) present the preceding time 

frames of Fig. 4 (b). We maintained a consistent color coding in all time-instances, i.e., each point has the same color throughout its 
trajectory in time, and the most significant values (largest in absolute value) are colored in either yellow or blue.

In the figure we see the multi-resolution properties of the proposed framework. At the highest level, 𝓁 = 8 in plot (a), the 
eigenvector of 𝐒(8)1 captures the coherent circular structures, i.e. the almost-invariant sets, which change from a horizontal orientation 
at the beginning of the trajectory to a vertical orientation at the end. These structures are consistent with the ones described by [34]. 
In contrast, in plots (b)-(c) (level 𝓁 = 4), the effect of the velocity change over time is apparent, demonstrating that our framework is 
capable of detecting such properties. These plots present two equal-length sub-segments of the trajectory: 𝑡 ∈ {49, … , 64} in plot (b) 
and 𝑡 ∈ {145, … , 160} in plot (c). Plot (c), which corresponds to the faster regime closer to the end of the trajectory, depicts that the 
circular structures are captured by the eigenvector, whereas in plot (b), which corresponds to the slower regime, these structures are 
not visible. Due to the increase in point movement velocity over time, the components that are similarly expressed over time in the 
sub-segment that is closer to the end of the trajectory (plot (c)) are mainly the almost-invariant sets, as captured by the operator from 
the highest level in plot (a). Conversely, in the slower regime, there are other components that are similarly expressed over short 
11
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Fig. 4. Data points colored according to the second eigenvector of the operator 𝐒(𝓁)
𝑟

at different levels and time frames: (a) 𝐒(8)1 , (b) 𝐒(4)4 , (c) 𝐒(4)10 , (d) 𝐒(3)7 and (e) 𝐒(3)8 . 
Plots (d) and (e) present the same 8 time points as in plot (b), where the points are colored according to a different eigenvector in each plot.

sub-segments in time, as captured by the eigenvector presented in plot (b). Plots (d) and (e) correspond to the two sub-segments 
𝑡 ∈ {49, … , 56} and 𝑡 ∈ {57, … , 64}, respectively, whose union is the sub-segment presented in plot (b). Note the similarity between 
the captured point dynamics in the two sub-segments of plots (d) and (e). This similarity explains the component emphasized by the 
eigenvector in plot (b), which is constructed based on these two sub-segments.

Note that the leading eigenvector of the operator 𝐒(𝓁)𝑟 was omitted throughout this example since it mostly captures the common 
point distribution at the different time-frames. The point distribution is of less interest in this example since it provides a general 
geometric description of the problem setting rather than the common trajectory properties.

In the following we present the eigenvectors of the operators 𝐅 and show that they indeed capture the time-varying trajectory 
behavior in consecutive time-frames.

Fig. 5 presents the data-points colored according to the leading eigenvectors of the respective operators 𝐅 corresponding to the 
largest positive and negative (in absolute value) eigenvalues. In this setting, the eigenvectors corresponding to negative eigenvalues 
describe the components that are significantly more dominant in the first half of the time segment and the eigenvectors corresponding 
to positive eigenvalues describe components that are significantly more dominant in the second half of the segment, as we will show 
in Section 6 (Theorem 2). Similarly to Fig. 4, each plot in Fig. 5 describes one time frame containing 2𝓁 time points. For visualization, 
we present the 𝑁 = 2500 data points locations at 8 evenly spaced time points along the time frame, and color them according to the 
eigenvector describing the entire time frame.

Fig. 5 (a) and Fig. 5 (b) present the eigenvectors of the operator 𝐅(8)
1 corresponding to the smallest negative eigenvalue in plot 

(a) and to the largest positive eigenvalue in plot (b). These plots depict that 𝐅(8)
1 captures the differences between the slower point 

movement in 𝑡 ∈ {1, … , 128} and the faster point movement in 𝑡 ∈ {129, … , 256}. Due to the change in point movement velocity 
over time, the component describing the circular structures (the almost-invariant sets) is significantly more dominant in the sub-

segment from the faster regime (𝑡 ∈ {129, … , 256}) than the slower regime (𝑡 ∈ {1, … , 128}), as captured by the eigenvector in plot 
(b). In contrast, in the slower regime other components are dominant (as demonstrated also by Fig. 4 (b)), leading to different 
structures being emphasized in Fig. 5 (a), which mostly captures the boundary points. Fig. 5 (c) and Fig. 5 (d) correspond to the 
time segment 𝑡 ∈ {129, … , 256}. Plot (c) presents the leading eigenvector of the operator 𝐅(7)

2 with a negative eigenvalue, describing 
the components that are more dominant in the slower regime (𝑡 ∈ {129, … , 192}) and plot (d) presents the leading eigenvector 
with a positive eigenvalue, describing the components that are more dominant in the faster regime (𝑡 ∈ {193, … , 256}). Note that 
both plots (c) and (d) emphasize circular structures, however, the structures in plot (d) are smaller than the ones in plot (b) and are 
approximately complemented by the structures in plot (c). This behavior implies that our framework decomposes the almost-invariant 
sets into smaller components in short sub-segments (at lower operator-tree levels), and therefore, indicates that the proposed method 
indeed captures meaningful dynamical information in different time-scales. Fig. 5 (e) presents the eigenvector of 𝐅(6)

1 (describing 
𝑡 ∈ [{1, … , 64}) with the largest negative eigenvalue. This plot depicts that in the slower regime (at the beginning of the trajectory) 
the operator 𝐅 highlights high-resolution fine components of the point movement dynamics.
12
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Fig. 5. Data points colored according to the eigenvector of (a-b) 𝐅(8)
1 with the smallest negative and largest positive eigenvalues, (c-d) 𝐅(7)

2 with the smallest negative 
and largest positive eigenvalues, and (e) 𝐅(6)

1 with the smallest negative eigenvalue.

Fig. 6. Clustering of trajectory points based on eigenvectors of the proposed operator 𝐒 in plot (a), and the operators from [68] in plot (b) and from [32] in plot (c). 
All operators are constructed by combining two time frames at 𝑡 = 250 and 𝑡 = 256.

We remark that different choices of the kernel scale in (12) lead to different resolutions. For example, taking a smaller kernel scale 
leads to a slower “convergence” to the almost-invariant sets of the representations obtained at the different levels of the operator 
𝐒(𝓁)𝑟 , as well as an enhancement of finer structures captured by the operator 𝐅(𝓁)

𝑟 .

In order to evaluate our framework with respect to previous work, we compare the operators 𝐒 and 𝐅, which serve as the building 
blocks of our algorithm, with related operators: (i) the dynamic Laplacian [32], which was shown to recover coherent sets from 
multiple time-frames of dynamical systems, and (ii) symmetric and anti-symmetric diffusion operators that were shown to recover 
similar and different components in multimodal data [68]. In [32], with a slight abuse of notation and in analogy to (13), the dynamic 
Laplacian is defined by 𝐋⊤𝐋, where 𝐋 =𝐖1𝐖2. The common and difference operators in [68] are defined by 𝐒̂ =𝐖1𝐖⊤

2 +𝐖2𝐖⊤
1

and 𝐀̂ =𝐖1𝐖⊤
2 −𝐖2𝐖⊤

1 , respectively, which are analogous to the operators 𝐒 and 𝐅 in (13) and (14).

Fig. 6 presents point clustering using k-means applied to the second eigenvector of the 3 operators used for recovering similarities: 
the proposed operator 𝐒 in plot (a), the operator 𝐒̂ from [68] in plot (b) and the operator 𝐋⊤𝐋 from [32] in plot (c). All 3 operators 
were constructed from time frames 𝑡 = 250 and 𝑡 = 256. We see in this figure that the proposed formulation of the operator is 
significantly better at capturing the almost-invariant sets (the circular structures). Note that the results presented here for 𝐋⊤𝐋 are 
different than those in [32], since we take into account only two close time frames, whereas in [32] the operator is constructed using 
all the points along the trajectory.

In Fig. 7, we present the point clustering obtained by applying k-means to the second eigenvector of the 2 operators used for 
recovering differences: the proposed operator 𝐅 in plot (a) and the operator 𝐀̂ from [68] in plot (b). In contrast to plot (b), in plot 
(a) we clearly see the swirl of the flow from and to the invariant sets (outward and inward).
13
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Fig. 7. Clustering of trajectory points based on eigenvectors of the proposed operator 𝐅 in plot (a) and operator 𝐀̂ from [68] in plot (b).

In addition to the differences demonstrated in Fig. 6 and Fig. 7, another crucial advantage of our formulation relates to the 
construction of the multi-resolution framework and its theoretical justification presented in Section 6. The operators in [68] and [32]

do not have any theoretical guarantees in such an operator-tree construction and may not be suitable to such a setting. Indeed, we 
report that a similar operator-tree constructed using the operators from [68] did not exhibit the expected behavior and no meaningful 
representations were obtained.

We conclude by noting that such a multi-resolution analysis of the dynamics may be especially useful in applications where 
the parameters of interest are inaccessible, e.g., for oceanic current analysis based on ocean drifters data [2,35], since the data is 
represented using non-linear kernels.

5.4. Hyperspectral and LiDAR imagery

In Section 4.1, we consider two datasets and present the two Riemannian composite operators 𝐒 and 𝐅. Later, in Section 4.2, these 
two datasets are considered as two consecutive sets in a temporal sequence of datasets, and the two Riemannian composite operators 
are used as a basic building block for our Riemannian multi-resolution analysis. Alternatively, similarly to the setting in [47,68], the 
two datasets could arise from simultaneous observations from two views or modalities. Here, we demonstrate the properties of the 
Riemannian composite operators 𝐒 and 𝐅 on real remote sensing data obtained by two different modalities.

We consider data from the 2013 IEEE GRSS data fusion contest,3 which includes a hyperspectral image (HSI) with 144 spectral 
bands (380 −1050 nm range) and a LiDAR Digital Surface Model of the University of Houston campus and its neighboring urban area 
in Houston, Texas. The data from both modalities have the same spatial resolution of 2.5 m. This data was previously considered in 
the context of manifold learning in [58].

We focus on two 60 × 90 image patches from the full dataset, in order to reduce computation time of the operators and their 
eigenvalue decomposition. We first preprocess the 60 ×90 LiDAR image and each image in the 60 ×90 ×144 HSI data. The preprocessing 
stage includes dividing each 60 × 90 image by its standard deviation and removing outliers: for the LiDAR image, pixel values larger 
than the 99th percentile were removed, and for the HSI data, in each image, pixel values larger than the 95th percentile or smaller 
than the 5th percentile were removed. In both modalities the outliers were replaced by their nearest non-outlier values. Fig. 8 (a) 
and Fig. 9 (a) present the two LiDAR image patches after preprocessing, and Fig. 8 (b) and Fig. 9 (b) present the two average HSI 
image patches after preprocessing.

We apply the operators 𝐒 and 𝐅 to this data in order to analyze the scene properties captured by both the LiDAR and the HSI 
sensors and extract the similarities and differences between them. This can be viewed as a manifold-driven component analysis.

We construct the operators according to Algorithm 3, where the LiDAR image and the HSI images are defined as two datasets 
with point correspondence between them given by the pixel location. We reshape both datasets such that 𝐱1 ∈ℝ𝑁×1 is the reshaped 
LiDAR image and 𝐱2 ∈ℝ𝑁×144 is the reshaped HSI images, where 𝑁 = 5400. The resulting kernels, 𝐖1 and 𝐖2, and operators, 𝐒 and 
𝐅, are matrices of size 𝑁 ×𝑁 .

We begin with an analysis of the first chosen image patch, shown in Fig. 8 (a) and (b). To depict the advantages of applying the 
proposed operators, we visually compare the eigenvectors of the kernels, 𝐖1 and 𝐖2, with the eigenvectors of the operators 𝐒 and 𝐅.

Fig. 8 (c-k) presents the absolute values of the leading eigenvectors of 𝐒 in (c), 𝐖1 in (d-e), 𝐖2 in (h-i), and of 𝐅 that correspond 
to the largest positive eigenvalues in (f-g) and largest negative (in absolute value) eigenvalues in (j-k). All eigenvectors are reshaped 
into images of size 60 × 90. The absolute value of the eigenvectors is presented in order to emphasize the dominant structures in 
the images and the differences between the leading eigenvectors of the two kernels and the leading eigenvectors of the operators 𝐒
and 𝐅.

3 http://www .grss -ieee .org /community /technical -committees /data -fusion /2013 -ieee -grss -data -fusion -contest/.
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Fig. 8. The two chosen image patches of (a) the LiDAR image and (b) the HSI image after preprocessing, along with the leading eigenvectors of (c) 𝐒, (d-e) 𝐖1
(LiDAR), (f-g) 𝐅 corresponding to its 2 largest positive eigenvalues, (h-i) 𝐖2 (HSI), (j-k) 𝐅 corresponding to its two smallest negative eigenvalues.

Fig. 8 (c) presents the absolute values of the leading eigenvector of 𝐒 and depicts that the operator 𝐒 indeed recovers common 
structures strongly expressed in both images. Specifically, this figure mostly highlights an ‘L’-shaped building at the top of the 
image, which is the most dominant structure (represented by the high pixel values) in both modalities. Fig. 8 (d-k) depicts that 
the eigenvectors of the operator 𝐅 capture and enhance differently expressed common structures. Consider for example the most 
dominant structures (with highest absolute values) in the LiDAR image presented in Fig. 8 (a). These structures include the ‘L’-

shaped building at the top of the image and trees at the bottom. Both structures are represented by high values in the eigenvectors 
of 𝐖1 in Fig. 8 (d-e). However, in Fig. 8 (f-g), which presents the leading eigenvectors of 𝐅 with positive eigenvalues, only the trees 
are significantly highlighted, whereas the ‘L’-shaped building is significantly attenuated. This is due to the differences between the 
two modalities, since the HSI image highlights this ‘L’ shaped building but not the trees. Other structures exhibiting such properties 
are marked by black arrows in Fig. 8 (f-g). In addition, Fig. 8 (h-k) depicts that the structures which are dominant only in the HSI 
images are emphasized by the eigenvectors of 𝐅 corresponding to negative eigenvalues, whereas structures that are dominant in both 
modalities are significantly attenuated. Examples for such structures are marked by black arrows in Fig. 8 (j-k).

We repeat the presentation for the second image patch, shown in Fig. 9 (a) and (b). Fig. 9 (c-g) presents the absolute value of the 
leading eigenvector of 𝐖1 in plot (c), of 𝐖2 in plot (d), of 𝐅 with a positive eigenvalue in plot (e), of 𝐅 with a negative eigenvalue 
in plot (f) and of 𝐒 in plot (g).
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Fig. 9. The two chosen image patches of (a) the LiDAR image and (b) the HSI image after preprocessing along with the leading eigenvectors of (c) 𝐖1 (LiDAR data), 
(d) 𝐖2 (HSI data), (e) 𝐅 corresponding to the largest positive eigenvalue, (f) 𝐅 corresponding to the smallest negative eigenvalue and (g) 𝐒.

Note the dominant structures (with high absolute values) in the leading eigenvectors of the two modalities in Fig. 9 (c) and (d). 
The dominant structures of the eigenvector representing the LiDAR image in plot (c) include buildings and trees, whereas in plot 
(d), which relates to the HSI image, only some of the building appear with high intensities and the trees are not clearly visible. This 
corresponds to the data presented in Fig. 9 (a) and (b). The leading eigenvector of 𝐅 with a positive eigenvalue, presented in Fig. 9

(e), captures buildings and trees that are expressed more dominantly in the LiDAR image compared with the HSI image. In addition, 
the structures that are dominant in both modalities appear to be less dominant in this plot. For example, the “attenuated” structures 
in plot (e) include the small rectangular roof part around pixels (𝑥, 𝑦) = (10, 25) (where 𝑥 denotes the horizontal axis and 𝑦 denotes 
the vertical axis) and the building around pixels (𝑥, 𝑦) = (80, 10). Conversely, the leading eigenvector of 𝐅 with a negative eigenvalue, 
presented in Fig. 9 (f), significantly enhances a specific location, marked by a black arrow in this plot, that is clearly visible in the 
HSI image presented in Fig. 9 (b) but barely visible in Fig. 9 plot (a). Note that this building is not represented by high pixel values 
in the raw HSI average image and therefore a simple subtraction between the two images will not lead to a similar emphasis of the 
building.

The leading eigenvector of 𝐒, presented in Fig. 9 (g), captures some combination of the structures that are dominant in both 
modalities.

To summarize this example, we showed that the operator 𝐅 captures common components that are expressed strongly only by 
one of the modalities and that the sign of the eigenvalues of 𝐅 indicates in which modality the component is stronger. In addition, 
we showed that the operator 𝐒 captures some combination of the dominant components in both modalities.

6. Spectral analysis

To provide theoretical justification to the proposed RMRA framework for spatiotemporal analysis presented in Section 4, we 
analyze the operators 𝐒 and 𝐅 defined in (13) and (14) and show that they admit the desired properties. Specifically, we show that 
the operator 𝐒 enhances common eigenvectors that are expressed similarly in two consecutive time frames in the sense that they 
have similar eigenvalues. In addition, we show that the operator 𝐅 enhances common eigenvectors that are expressed differently in 
two consecutive time frames in the sense that they have different eigenvalues.
16
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In the following theoretical analysis we focus on two cases: (i) 𝐖1 and 𝐖2 have strictly common components, i.e., some of the 
eigenvectors of the two matrices are identical, and (ii) 𝐖1 and 𝐖2 have weakly common components, i.e. some of the eigenvectors 
of the two matrices differ by a small perturbation.

6.1. Strictly common components

Given that some of the eigenvectors of matrices 𝐖1 and 𝐖2 are identical, we show in the following that for these identical 
eigenvectors, the operator 𝐒 enhances the eigenvectors that have similar dominant eigenvalues and the operator 𝐅 enhances the 
eigenvectors that have significantly different eigenvalues.

We begin by reiterating a theorem from [42] along with its proof, which shows that the eigenvectors that are similarly expressed 
in both matrices, 𝐖1 and 𝐖2, correspond to the largest eigenvalues of 𝐒.

Theorem 1. Consider a vector 𝜓 , which is an eigenvector of both 𝐖1 and 𝐖2 with possibly different eigenvalues: 𝐖1𝜓 = 𝜆(1)𝜓 and 
𝐖2𝜓 = 𝜆(2)𝜓 . Then, 𝜓 is also an eigenvector of 𝐒 =𝐖1∕2

1

(
𝐖−1∕2

1 𝐖2𝐖
−1∕2
1

)1∕2
𝐖1∕2

1 with the corresponding eigenvalue:

𝜆(𝐒) =
√
𝜆(1)𝜆(2) (34)

Proof. From (13) we have:

𝐒𝜓 =𝐖1∕2
1

(
𝐖−1∕2

1 𝐖2𝐖
−1∕2
1

)1∕2
𝐖1∕2

1 𝜓

=𝐖1∕2
1

(
𝐖−1∕2

1 𝐖2𝐖
−1∕2
1

)1∕2√
𝜆(1)𝜓

=𝐖1∕2
1

√
𝜆(2)∕𝜆(1)

√
𝜆(1)𝜓

=
√
𝜆(1)𝜆(2)𝜓

where the transition before last is due to 𝐖−1∕2
1 𝐖(2)𝐖−1∕2

1 𝜓 = (𝜆(2)∕𝜆(1))𝜓 . □

This result implies that strictly common components that are dominant and similarly expressed in both datasets (with similar 
large eigenvalues) are dominant in 𝐒 (have a large eigenvalue 𝜆(𝐒)), i.e. if 𝜆(1) ≈ 𝜆(2) then 𝜆(𝐒) ≈ 𝜆(1), 𝜆(2).

We derive a similar theoretical analysis for the operator 𝐅.

Theorem 2. Consider a vector 𝜓 , which is an eigenvector of both 𝐖1 and 𝐖2 with possibly different eigenvalues: 𝐖1𝜓 = 𝜆(1)𝜓 and 
𝐖2𝜓 = 𝜆(2)𝜓 . Then 𝜓 is also an eigenvector of 𝐅 = 𝐒1∕2 log

(
𝐒−1∕2𝐖1𝐒−1∕2

)
𝐒1∕2 with the corresponding eigenvalue:

𝜆(𝐅) = 1
2

√
𝜆(1)𝜆(2)(log(𝜆(1)) − log(𝜆(2))) (35)

Proof. From (14) we have:

𝐅𝜓 =𝐒1∕2 log
(
𝐒−1∕2𝐖1𝐒−1∕2

)
𝐒1∕2𝜓

=𝐒1∕2 log
(
𝐒−1∕2𝐖1𝐒−1∕2

)
(𝜆(1)𝜆(2))0.25𝜓

=𝐒1∕2(0.5 log(𝜆(1)) − 0.5 log(𝜆(2)))(𝜆(1)𝜆(2))0.25𝜓

= 1
2

√
𝜆(1)𝜆(2)(log(𝜆(1)) − log(𝜆(2)))𝜓

where the transition before last is due to 𝐒−1∕2𝐖1𝐒−1∕2𝜓 =
√
𝜆(1)∕𝜆(2)𝜓 and the application of log to the matrix multiplication, which 

is equivalent to applying log to its eigenvalues, leading to log(
√
𝜆(1)∕𝜆(2)) = 0.5 log(𝜆(1)) − 0.5 log(𝜆(2)). □

This result indicates that the strictly common components of the two datasets are also expressed by 𝐅 and that their order is 
determined by their relative expression in each dataset. For example, if 𝜓 is an eigenvector of both 𝐖1 and 𝐖2 and corresponds 
to equal eigenvalues, 𝜆(1) = 𝜆(2), then this component is part of the null space of 𝐅; if 𝜆(1) ≠ 𝜆(2), then 𝜓 corresponds to a nonzero 
eigenvalue in 𝐅. Note that 𝜆(𝐅) depends also on the multiplication by 

√
𝜆(1)𝜆(2).

Another notable result of Theorem 2 is that the sign of the eigenvalues of 𝐅 indicates in which dataset their corresponding 
eigenvector is more dominant. For example, if 𝜓 is an eigenvector of both 𝐖1 and 𝐖2 that has a large corresponding eigenvalue in 
𝐖1 but a small eigenvalue in 𝐖2 (𝜆(1) ≫𝜆(2)), then the corresponding eigenvalue in 𝐅 is large and positive. Conversely, if 𝜓 is more 
dominant in 𝐖2, then its corresponding eigenvalue in 𝐅 is large (in absolute value) and negative.

An example depicting these properties is presented in Subsection 5.1, which demonstrates that the eigenvalues of the operators 𝐒
and 𝐅 are indeed equal to the expected values based on Theorem 1 and Theorem 2.
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It is important to note that when 𝐖1 and 𝐖2 are defined with a Gaussian kernel, as in (11), the kernel scale choice may affect 
the eigenvalue decay and thus affect the highlighted components by 𝐒 and 𝐅, as indicated by Theorem 1 and Theorem 2. In our 
experiments we have focused on a simple approach to reduce such tuning issues by normalizing distances by their median, leading 
to cancellation of global scaling differences. The effect of this approach is studied in [26] under a random matrix framework, which 
showed the importance of choosing a proper bandwidth. However, such a tuning approach does not directly solve the issue when 
two modalities have significantly different characteristics and outliers, as shown in [24] for kernel sensor fusion algorithms. Another 
approach is adaptively tuning the kernel scale locally. For example, in [50], a scale is chosen for each dimension by optimizing 
over the resulting intrinsic dimension of the data. Other methods locally scale the kernel bandwidth for each pair of points, e.g., 
[9,16,86]. Such methods allow for a better choice of the kernel scale and can minimize the variability of the bandwidths of 𝐖𝓁
between different modalities, and therefore, reduce the effect of the bandwidth on 𝐒 and 𝐅.

6.2. Weakly common components

To further demonstrate the power of the operators 𝐒 and 𝐅, we provide stability analysis by investigating how a small variation of 
the common eigenvector affects the results. For this purpose, we make use of the concept of a pseudo-spectrum [80]. While pseudo-

spectra is typically used to provide an analytic framework for investigating non-normal matrices and operators, here we apply it 
to symmetric matrices for the purpose of analysis of nearly but non-common eigenvectors. We begin by recalling three equivalent 
definitions of the 𝜖-pseudo-spectrum as presented in [80].

Definition 1 (Pseudo-spectrum). Given a matrix 𝐌 ∈ ℝ𝑁×𝑁 , the following definitions of the 𝜖-pseudo-spectrum are equivalent for a 
small 𝜖 > 0:

1. 𝜎𝜖(𝐌) =
{
𝜆 ∈ℝ ∶ ‖‖‖(𝜆I −𝐌)−1‖‖‖ ≥ 𝜖−1

}
2. 𝜎𝜖(𝐌) =

{
𝜆 ∈ℝ ∶ 𝜆 ∈ 𝜎(𝐌+𝐄) for a 𝐄 with ‖𝐄‖ ≤ 𝜖

}
3. 𝜎𝜖(𝐌) =

{
𝜆 ∈ℝ ∶ ∃𝑣 ∈ℝ𝑁 with ‖𝑣‖2 = 1 s.t. ‖(𝐌− 𝜆I)𝑣‖2 ≤ 𝜖

}
where 𝜎(𝐌) denotes the set of eigenvalues of 𝐌, I denotes the identity matrix, ‖⋅‖2 denotes the 𝓁2 norm, and ‖⋅‖ denotes the induced 
operator norm. Moreover, we term a vector 𝑣 that adheres to definition 3 an 𝜖-pseudo-eigenvector.

The following theorem is the counterpart of Theorem 1 for the case where the eigenvector is slightly perturbed.

Theorem 3. Suppose there exists an eigenpair 𝜆(𝑘) and 𝜓 (𝑘) of 𝐖𝑘 for 𝑘 = 1, 2 so that 𝜓 (1) = 𝜓 (2) + 𝜓𝜖𝐒 , where ‖‖‖𝜓𝜖𝐒
‖‖‖2 ≤ √

𝜆(2)

𝜆̃
(2)
𝑚𝑎𝑥

√
𝜆(1)

𝜖𝐒 for a 

small 𝜖𝐒 > 0, where 𝜆̃(2)𝑚𝑎𝑥 = ‖𝐖2 − 𝜆(2)I‖. Then, we have√
𝜆(1)𝜆(2) ∈ 𝜎𝜖𝐒 (𝐒) . (36)

Specifically, we have‖‖‖‖(𝐒−
√
𝜆(1)𝜆(2)I)𝜓 (1)‖‖‖‖2 ≤ 𝜖𝐒 ,

and 𝜓 (1) is a corresponding 𝜖𝐒-pseudo-eigenvector of 𝐒.

Informally, this theorem implies that when 𝜓 (1) is a slight perturbation of 𝜓 (2), then 𝜓 (1) is “almost” an eigenvector of 𝐒 with 
a corresponding eigenvalue 

√
𝜆(1)𝜆(2). Equivalently, 𝜓 (2) can also be shown to be an 𝜖𝐒-pseudo-eigenvector of 𝐒 with the same 

corresponding eigenvalue, which suggests that the operator 𝐒 is “stable” to finite perturbations. We remark that since ‖𝐖2‖ = 1, we 
have that 𝜆̃(2)𝑚𝑎𝑥 = max(1 − 𝜆(2), 𝜆(2)) ∈ [0.5, 1), guaranteeing that the perturbation of the eigenvector is small. We also remark that our 
numerical study shows that the bound for the 𝜖-pseudo-eigenvalues and 𝜖-pseudo-eigenvectors of 𝐒 is tight.

Proof. By Proposition 1 (see Appendix A), we have

𝐒 =𝐖1∕2
1

(
𝐖−1∕2

1 𝐖2𝐖
−1∕2
1

)1∕2
𝐖1∕2

1 = (𝐖2𝐖−1
1 )1∕2𝐖1. (37)

Since 𝜓 (1) is an eigenvector of 𝐖1 with an eigenvalue 𝜆(1), we have

𝐒𝜓 (1) =
(
𝐖2𝐖−1

1
)1∕2𝐖1𝜓

(1) = 𝜆(1)
(
𝐖2𝐖−1

1
)1∕2

𝜓 (1). (38)

Therefore, it is sufficient to show that 𝜓 (1) is an 𝜖-pseudo-eigenvector of 
(
𝐖2𝐖−1

1
)1∕2

. By a direct expansion, we have

𝐖2𝐖−1
1 𝜓 (1) = 1

𝜆(1)
𝐖2𝜓

(1) = 1
𝜆(1)

𝐖2(𝜓 (2) +𝜓𝜖𝐒 )

= 𝜆(2)

𝜆(1)
𝜓 (2) + 1

𝜆(1)
𝐖2𝜓𝜖𝐒

= 𝜆(2)

𝜆(1)
𝜓 (1) + 1

𝜆(1)
(𝐖2 − 𝜆(2)I)𝜓𝜖𝐒

, (39)
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where the last transition is obtained by replacing 𝜓 (2) with 𝜓 (1) −𝜓𝜖𝐒
. By reorganizing the elements in (39), we have(

𝐖2𝐖−1
1 − 𝜆(2)

𝜆(1)
I
)
𝜓 (1) = 1

𝜆(1)
(𝐖2 − 𝜆(2)I)𝜓𝜖𝐒

. (40)

The left hand side can be decomposed into:(
𝐖2𝐖−1

1 − 𝜆(2)

𝜆(1)
I
)
𝜓 (1) =

(
(𝐖2𝐖−1

1 )1∕2 +
√

𝜆(2)

𝜆(1)
I

)(
(𝐖2𝐖−1

1 )1∕2 −
√

𝜆(2)

𝜆(1)
I

)
𝜓 (1), (41)

and since (𝐖2𝐖−1
1 )1∕2 +

√
𝜆(2)∕𝜆(1)I is positive definite, (40) and (41) lead to(

(𝐖2𝐖−1
1 )1∕2 −

√
𝜆(2)

𝜆(1)
I

)
𝜓 (1) = 1

𝜆(1)

(
(𝐖2𝐖−1

1 )1∕2 +
√

𝜆(2)

𝜆(1)
I

)−1

(𝐖2 − 𝜆(2)I)𝜓𝜖𝐒 . (42)

Multiplying both sides by 𝜆(1), we have(
𝐒−

√
𝜆(1)𝜆(2)I

)
𝜓 (1) =

(38)
𝜆(1)(𝐖2𝐖−1

1 )1∕2𝜓 (1) −
√
𝜆(1)𝜆(2)𝜓 (1)

=𝜆(1)

(
(𝐖2𝐖−1

1 )1∕2 −
√

𝜆(2)

𝜆(1)
I

)
𝜓 (1)

=
(42)

(
(𝐖2𝐖−1

1 )1∕2 +
√

𝜆(2)

𝜆(1)
I

)−1

(𝐖2 − 𝜆(2)I)𝜓𝜖𝐒
. (43)

Applying the 𝓁2 norm leads to:

‖‖‖‖(𝐒−√
𝜆(1)𝜆(2)I

)
𝜓 (1)‖‖‖‖2 ≤

‖‖‖‖‖‖
(
(𝐖2𝐖−1

1 )1∕2 +
√

𝜆(2)

𝜆(1)
I

)−1‖‖‖‖‖‖‖‖‖𝐖2 − 𝜆(2)I‖‖‖‖‖‖𝜓𝜖𝐒
‖‖‖2 (44)

≤
1

𝜎min
(
(𝐖2𝐖−1

1 )1∕2
)
+
√
𝜆(2)∕𝜆(1)

𝜆̃(2)𝑚𝑎𝑥

√
𝜆(2)

𝜆̃
(2)
𝑚𝑎𝑥

√
𝜆(1)

𝜖𝐒

=
√
𝜆(2)∕𝜆(1)

𝜎min
(
(𝐖2𝐖−1

1 )1∕2
)
+
√
𝜆(2)∕𝜆(1)

𝜖𝐒

≤

√
𝜆(2)∕𝜆(1)√
𝜆(2)∕𝜆(1)

𝜖𝐒 = 𝜖𝐒,

where 𝜎min denotes the minimum eigenvalue. Thus, 
√
𝜆(1)𝜆(2) is an 𝜖𝐒-pseudo-eigenvalue of 𝐒, where 𝜓 (1) is a corresponding 𝜖𝐒-

pseudo-eigenvector. □

Note that the above proof shows that 𝜓 (1) is a pseudo-eigenvector of 𝐒, when 𝐒 is defined as the midpoint of the geodesic curve 
connecting 𝐖1 and 𝐖2 (by setting 𝑝 = 0.5). However, due to the decomposition in (41), the proof is not compatible with definitions 
of 𝐒 at other points 𝑝 ∈ (0, 1) along the geodesic path. For such cases, a different proof is required, specifically, without using the 
algebraic relationship in (41) that leads to (42). In the following statement, which is the counterpart of Theorem 2 for the case where 
the eigenvector is not strictly common, we control the “pseudo” part by a straightforward perturbation argument.

Theorem 4. For 𝑘 = 1, 2, consider the eigendecomposition 𝐖𝑘 = 𝐔𝑘𝐋𝑘𝐔⊤
𝑘
∈ ℝ𝑁×𝑁 , where 𝐋𝑘 ∶= diag(𝜆(𝑘)1 , … , 𝜆(𝑘)

𝑁
) so that 𝜆(1)1 ≥… ≥ 𝜆

(1)
𝑁

and 𝐔𝑘 ∶=
[
𝜓

(𝑘)
1 … 𝜓

(𝑘)
𝑁

]
∈ 𝑁,𝑁 . Assume the above eigendecomposition satisfies 𝐔2 =𝐔1 + 𝜖𝐀, where ‖𝐀‖ = 1, 𝜖 > 0 is a small constant, 

and 𝑐−1 ≤ 𝓁𝑖 ∶= 𝜆
(2)
𝑖
∕𝜆(1)

𝑖
≤ 𝑐 for some constant 𝑐 ≥ 1 for all 𝑖 = 1, … , 𝑁 . For any 𝑖 = 1, … , 𝑁 , denote the spectral gap 𝛾𝑖 ∶= min𝑘,𝓁𝑘≠𝓁𝑖 |𝓁𝑖 −

𝓁𝑘|.
Fix 𝑗. Then, for the 𝑗-th eigenpair of 𝐖1, when 𝜖 is sufficiently small, we have

‖‖‖‖‖‖‖
⎛⎜⎜⎝𝐅− 0.5

√
𝜆
(1)
𝑗
𝜆
(2)
𝑗

log
⎛⎜⎜⎝
𝜆
(1)
𝑗

𝜆
(2)
𝑗

⎞⎟⎟⎠ I
⎞⎟⎟⎠𝜓 (1)

𝑗

‖‖‖‖‖‖‖2 =𝑂(𝜖) ,

where the implied constant depends on 
√
𝑐 ln 𝑐

min𝑖
(
𝛾𝑖

√
𝜆
(1)
𝑖

) .
19
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Proof. By Proposition 1 (see Appendix A), we rewrite the operator 𝐅 = 𝐒1∕2 log
(
𝐒−1∕2𝐖1𝐒−1∕2

)
𝐒1∕2 as 𝐅 = log

(
𝐖1𝐒−1

)
𝐒. Denote

𝜆̂𝐅 = 0.5
√

𝜆
(1)
𝑗
𝜆
(2)
𝑗

log
⎛⎜⎜⎝
𝜆
(1)
𝑗

𝜆
(2)
𝑗

⎞⎟⎟⎠ .
By Theorem 3 and the definition of an 𝜖𝐒-pseudo-eigenvector (see Proposition 2 in Appendix A), there exists 𝐄𝐒 with a sufficiently 
small norm, such that

𝐒𝜓 (1)
𝑗

=
(√

𝜆
(1)
𝑗
𝜆
(2)
𝑗
I −𝐄𝐒

)
𝜓

(1)
𝑗

,

and therefore, we have(
𝐅− 𝜆̂𝐅I

)
𝜓

(1)
𝑗

=
(
log

(
𝐖1𝐒−1

)
𝐒− 𝜆̂𝐅I

)
𝜓

(1)
𝑗

=
√

𝜆
(1)
𝑗
𝜆
(2)
𝑗

⎛⎜⎜⎜⎝log
(
𝐖1𝐒−1

)
−

𝜆̂𝐅√
𝜆
(1)
𝑗
𝜆
(2)
𝑗

I
⎞⎟⎟⎟⎠𝜓

(1)
𝑗

− log
(
𝐖1𝐒−1

)
𝐄𝐒𝜓

(1)
𝑗

. (45)

Since both 𝐖1 and 𝐖2 are positive definite, they are invertible and also 
(
𝐖2𝐖−1

1
)1∕2

is invertible. Therefore, by (37), 𝐖1𝐒−1 =
𝐖1𝐖−1

1
(
𝐖2𝐖−1

1
)−1∕2 = (

𝐖2𝐖−1
1

)−1∕2
. Substituting this relationship into (45) yields

(
𝐅− 𝜆̂𝐅I

)
𝜓

(1)
𝑗

= −

√
𝜆
(1)
𝑗
𝜆
(2)
𝑗

2

⎛⎜⎜⎝log
(
𝐖2𝐖−1

1
)
− log

⎛⎜⎜⎝
𝜆
(2)
𝑗

𝜆
(1)
𝑗

⎞⎟⎟⎠ I
⎞⎟⎟⎠𝜓 (1)

𝑗
− 1

2
log

(
𝐖2𝐖−1

1
)
𝐄𝐒𝜓

(1)
𝑗

. (46)

Now we control the right hand side term by term. Recall that for any analytic function 𝑓 over an open set in ℝ that contains the 
spectrum of 𝐖2𝐖−1

1 , we can define 𝑓 (𝐖2𝐖−1
1 ). Since 𝐖2𝐖−1

1 and 𝐖−1∕2
1 𝐖2𝐖

−1∕2
1 are similar, we have

𝑓 (𝐖2𝐖−1
1 ) =𝐖1∕2

1 𝑓
(
𝐖−1∕2

1 𝐖2𝐖
−1∕2
1

)
𝐖−1∕2

1 , (47)

and hence

𝑓
(
𝐖−1∕2

1 𝐖2𝐖
−1∕2
1

)
𝜓

(1)
𝑗

=𝐖−1∕2
1 𝑓 (𝐖2𝐖−1

1 )𝐖1∕2
1 𝜓

(1)
𝑗

=
√

𝜆
(1)
𝑗
𝐖−1∕2

1 𝑓 (𝐖2𝐖−1
1 )𝜓 (1)

𝑗
. (48)

Let 𝜇𝑖 and 𝑣𝑖 denote the eigenvalues and eigenvectors of the matrix 𝐖−1∕2
1 𝐖2𝐖

−1∕2
1 , respectively, for 𝑖 = 1, … , 𝑁 . Since {𝜓 (1)

𝑗
}𝑁
𝑗=1

and {𝑣𝑗}𝑁𝑗=1 are both orthonormal bases of ℝ𝑁 , we have 𝜓 (1)
𝑗

=
∑

𝑖 𝛼𝑗𝑖𝑣𝑖, where 𝛼𝑗𝑖 ∈ℝ and ∑𝑖 𝛼
2
𝑗𝑖
= 1 for all 𝑗. By (48), we have√

𝜆
(1)
𝑗
𝜆
(2)
𝑗

2

⎛⎜⎜⎝log(𝐖2𝐖−1
1 ) − log

⎛⎜⎜⎝
𝜆
(2)
𝑗

𝜆
(1)
𝑗

⎞⎟⎟⎠ I
⎞⎟⎟⎠𝜓 (1)

𝑗

=

√
𝜆
(2)
𝑗

2
𝐖1∕2

1

⎛⎜⎜⎝log(𝐖−1∕2
1 𝐖2𝐖

−1∕2
1 ) − log

⎛⎜⎜⎝
𝜆
(2)
𝑗

𝜆
(1)
𝑗

⎞⎟⎟⎠ I
⎞⎟⎟⎠𝜓 (1)

𝑗

=

√
𝜆
(2)
𝑗

2
𝐖1∕2

1

𝑁∑
𝑖=1

⎛⎜⎜⎝log(𝐖−1∕2
1 𝐖2𝐖

−1∕2
1 ) − log

⎛⎜⎜⎝
𝜆
(2)
𝑗

𝜆
(1)
𝑗

⎞⎟⎟⎠ I
⎞⎟⎟⎠𝛼𝑗𝑖𝑣𝑖. (49)

Using the fact that

⎛⎜⎜⎝log
(
𝐖−1∕2

1 𝐖2𝐖
−1∕2
1

)
− log

⎛⎜⎜⎝
𝜆
(2)
𝑗

𝜆
(1)
𝑗

⎞⎟⎟⎠ I
⎞⎟⎟⎠𝑣𝑖 =

⎛⎜⎜⎝log𝜇𝑖 − log
⎛⎜⎜⎝
𝜆
(2)
𝑗

𝜆
(1)
𝑗

⎞⎟⎟⎠
⎞⎟⎟⎠𝑣𝑖 , (50)

yields √
𝜆
(2)
𝑗

2
𝐖1∕2

1

𝑁∑
𝑖=1

⎛⎜⎜⎝log(𝐖−1∕2
1 𝐖2𝐖

−1∕2
1 ) − log

⎛⎜⎜⎝
𝜆
(2)
𝑗

𝜆
(1)
𝑗

⎞⎟⎟⎠ I
⎞⎟⎟⎠𝛼𝑗𝑖𝑣𝑖

=

√
𝜆
(2)
𝑗

2
𝐖1∕2

1

𝑁∑
𝑖=1

⎛⎜⎜⎝log𝜇𝑖 − log
⎛⎜⎜⎝
𝜆
(2)
𝑗

𝜆
(1)
𝑗

⎞⎟⎟⎠
⎞⎟⎟⎠𝛼𝑗𝑖𝑣𝑖. (51)

Therefore, the squared 𝐿2 norm of the first term in the right hand side of (46) becomes
20
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‖‖‖‖‖‖‖‖
√

𝜆
(1)
𝑗
𝜆
(2)
𝑗

2

⎛⎜⎜⎝log(𝐖2𝐖−1
1 ) − log

⎛⎜⎜⎝
𝜆
(2)
𝑗

𝜆
(1)
𝑗

⎞⎟⎟⎠ I
⎞⎟⎟⎠𝜓 (1)

𝑗

‖‖‖‖‖‖‖‖
2

2

=

‖‖‖‖‖‖‖‖
√

𝜆
(2)
𝑗

2
𝐖1∕2

1

𝑁∑
𝑖=1

⎛⎜⎜⎝log𝜇𝑖 − log
⎛⎜⎜⎝
𝜆
(2)
𝑗

𝜆
(1)
𝑗

⎞⎟⎟⎠
⎞⎟⎟⎠𝛼𝑗𝑖𝑣𝑖

‖‖‖‖‖‖‖‖
2

2

≤
𝜆
(2)
𝑗

4
‖‖‖𝐖1∕2

1
‖‖‖2

‖‖‖‖‖‖‖
𝑁∑
𝑖=1

⎛⎜⎜⎝log𝜇𝑖 − log
⎛⎜⎜⎝
𝜆
(2)
𝑗

𝜆
(1)
𝑗

⎞⎟⎟⎠
⎞⎟⎟⎠𝛼𝑗𝑖𝑣𝑖

‖‖‖‖‖‖‖
2

2

=
𝜆
(2)
𝑗

4

𝑁∑
𝑖=1

𝛼2𝑗𝑖

⎛⎜⎜⎝log𝜇𝑖 − log
⎛⎜⎜⎝
𝜆
(2)
𝑗

𝜆
(1)
𝑗

⎞⎟⎟⎠
⎞⎟⎟⎠
2

, (52)

where we use the fact that {𝑣𝑗} form an orthonormal basis and that the operator norm ‖‖‖𝐖1∕2
1

‖‖‖2 = 1, since 𝐖1 is normalized.

Next, as in (43), we set

𝐄𝐒𝜓
(1)
𝑗

= −
(
𝐒−

√
𝜆
(1)
𝑗
𝜆
(2)
𝑗
I
)
𝜓

(1)
𝑗

= −𝜆(1)
𝑗

⎛⎜⎜⎜⎝(𝐖2𝐖−1
1 )1∕2 −

√√√√√𝜆
(2)
𝑗

𝜆
(1)
𝑗

I
⎞⎟⎟⎟⎠𝜓

(1)
𝑗

. (53)

Since 𝑓 (𝑥) = log(𝑥)
√
𝑥 is analytic over an open set that contains the spectrum of 𝐖1𝐖−1

2 , by the same argument as that for (51), we 
have

log
(
𝐖2𝐖−1

1
)
𝐄𝐒𝜓

(1)
𝑗

= −𝜆(1)
𝑗

log
(
𝐖2𝐖−1

1
) ⎛⎜⎜⎜⎝(𝐖2𝐖−1

1 )1∕2 −

√√√√√𝜆
(2)
𝑗

𝜆
(1)
𝑗

I
⎞⎟⎟⎟⎠𝜓

(1)
𝑗

= −
√

𝜆
(1)
𝑗
𝐖1∕2

1

𝑁∑
𝑖=1

𝛼𝑗𝑖 log(𝜇𝑖)
⎛⎜⎜⎜⎝
√
𝜇𝑖 −

√√√√√𝜆
(2)
𝑗

𝜆
(1)
𝑗

⎞⎟⎟⎟⎠𝑣𝑖 ,
and hence the squared 𝐿2 norm of the second term in the right hand side of (46) becomes

‖‖‖log(𝐖2𝐖−1
1

)
𝐄𝐒𝜓

(1)
𝑗

‖‖‖22 ≤ 𝜆
(1)
𝑗

𝑁∑
𝑖=1

𝛼2𝑗𝑖(log𝜇𝑖)
2

⎛⎜⎜⎜⎝
√
𝜇𝑖 −

√√√√√𝜆
(2)
𝑗

𝜆
(1)
𝑗

⎞⎟⎟⎟⎠
2

, (54)

where we again use the fact that {𝑣𝑗} form an orthonormal basis and that the operator norm ‖‖‖𝐖1∕2
1

‖‖‖2 = 1. To finish the proof, we 

control 𝛼𝑗𝑖 and the relationship between 𝜇𝑖 and 
𝜆
(2)
𝑗

𝜆
(1)
𝑗

in (52) and (54) using matrix perturbation theory. By a direct expansion, we 

have

𝐖−1∕2
1 𝐖2𝐖

−1∕2
1 =𝐔1𝐋2𝐋−1

1 𝐔⊤
1 + 𝜖𝐁 , (55)

where 𝐁 = 𝐔1𝐋
−1∕2
1 𝐔⊤

1 (𝐀𝐋2𝐔⊤
1 + 𝐔1𝐋2𝐀⊤)𝐔1𝐋

−1∕2
1 𝐔⊤

1 + 𝜖𝐔1𝐋
−1∕2
1 𝐔⊤

1𝐀𝐋2𝐀⊤𝐔1𝐋
−1∕2
1 𝐔⊤

1 . To simplify the notation, we assume that the 

diagonal entries of 𝐋2𝐋−1
1 = diag

(
𝜆
(2)
1

𝜆
(1)
1
,… ,

𝜆
(2)
𝑁

𝜆
(1)
𝑁

)
= diag

(
𝓁1,… ,𝓁𝑁

)
are all distinct, or the following argument could be carried out 

with eigenprojections. Thus, by a standard perturbation argument, when 𝜖 is sufficiently small, we have

𝑣𝑖 = 𝜓
(1)
𝑖

+ 𝜖
∑
𝑘≠𝑖

⟨𝜓 (1)
𝑘

,𝐁𝜓 (1)
𝑖

⟩
𝜆
(2)
𝑖
∕𝜆(1)

𝑖
− 𝜆

(2)
𝑘
∕𝜆(1)

𝑘

𝜓
(1)
𝑘

+𝑂(𝜖2), 𝜇𝑖 =
𝜆
(2)
𝑖

𝜆
(1)
𝑖

+ 𝜖⟨𝜓 (1)
𝑖

,𝐁𝜓 (1)
𝑖

⟩+𝑂(𝜖2) (56)

for each 𝑖 = 1, … , 𝑁 . Note that

𝐼𝑁 =𝐔⊤
2𝐔2 = (𝐔1 + 𝜖𝐀)⊤(𝐔1 + 𝜖𝐀) = 𝐼𝑁 + 𝜖(𝐀⊤𝐔1 +𝐔⊤

1𝐀) + 𝜖2𝐀⊤𝐀 ,

so we have

𝐀⊤𝐔1 = −𝐔⊤
1𝐀− 𝜖𝐀⊤𝐀 . (57)

Thus, by a direct expansion with the definition of 𝐁, we have

⟨𝜓 (1)
𝑘

,𝐁𝜓 (1)
𝑖

⟩ =(𝜆(1)
𝑖
𝜆
(1)
𝑘
)−1∕2𝑒⊤

𝑘
𝐔⊤
1 (𝐀𝐋2𝐔⊤

1 +𝐔1𝐋2𝐀⊤)𝐔1𝑒𝑖 +𝑂(𝜖)

= (𝜆(1)𝜆(1))−1∕2(𝜆(2)𝑒⊤𝐔⊤𝐀𝑒𝑖 + 𝜆
(2)
𝑒⊤𝐀⊤𝐔1𝑒𝑖) +𝑂(𝜖)
𝑖 𝑘 𝑖 𝑘 1 𝑘 𝑘
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=(𝜆(1)
𝑖
𝜆
(1)
𝑘
)−1∕2

(
(𝜆(2)

𝑖
− 𝜆

(2)
𝑘
)𝑒⊤

𝑘
𝐔⊤
1𝐀𝑒𝑖 − 𝜖𝜆

(2)
𝑘
𝑒𝑘𝐀⊤𝐀𝑒𝑖

)
+ (𝜆(1)

𝑖
𝜆
(1)
𝑘
)−1∕2𝑂(𝜖)

= (𝜆(1)
𝑖
𝜆
(1)
𝑘
)−1∕2(𝜆(2)

𝑖
− 𝜆

(2)
𝑘
)𝑒⊤

𝑘
𝐔⊤
1𝐀𝑒𝑖 +𝑂(𝜖) ,

where the equality before last comes from (57), the last equality is due to |𝑒⊤
𝑘
𝐀⊤𝐀𝑒𝑖| ≤ 1, since ‖𝐴‖ = 1, and the constant in this 

derivation depends on (𝜆(1)
𝑖
𝜆
(1)
𝑘
)−1∕2. Thus, for the 𝑗-th eigenpair we are concerned with, we have 𝜇𝑗 =

𝜆
(2)
𝑗

𝜆
(1)
𝑗

+𝑂(𝜖2), since ⟨𝜓 (1)
𝑗

, 𝐁𝜓 (1)
𝑗

⟩ =
𝑂(𝜖). For the eigenvector, when 𝑘 ≠ 𝑖, we have

||||||
⟨𝜓 (1)

𝑘
,𝐁𝜓 (1)

𝑖
⟩

𝜆
(2)
𝑖
∕𝜆(1)

𝑖
− 𝜆

(2)
𝑘
∕𝜆(1)

𝑘

|||||| ≤
(𝜆(1)

𝑖
𝜆
(1)
𝑘
)−1∕2 |||𝜆(2)𝑖

− 𝜆
(2)
𝑘

||||||𝜆(2)𝑖
∕𝜆(1)

𝑖
− 𝜆

(2)
𝑘
∕𝜆(1)

𝑘

|||
|||𝑒⊤𝑘𝐔⊤

1𝐀𝑒𝑖
|||+𝑂(𝜖)

≤
1
𝛾𝑖

|||(𝜆(2)𝑖
− 𝜆

(2)
𝑘
)|||√

𝜆
(1)
𝑖
𝜆
(1)
𝑘

|||𝑒⊤𝑘𝐔⊤
1𝐀𝑒𝑖

|||+𝑂(𝜖) ,

where the constant depends on 1√
𝜆
(1)
𝑖

𝜆
(1)
𝑘

𝛾𝑖

.

By (56) we have for 𝑗 ≠ 𝑖:

𝛼𝑗𝑖 = ⟨𝜓 (1)
𝑗

, 𝑣𝑖⟩ = ⟨𝜓 (1)
𝑗

,𝜓
(1)
𝑖

+ 𝜖
∑
𝑘≠𝑖

⟨𝜓 (1)
𝑘

,𝐁𝜓 (1)
𝑖

⟩
𝜆
(2)
𝑖
∕𝜆(1)

𝑖
− 𝜆

(2)
𝑘
∕𝜆(1)

𝑘

𝜓
(1)
𝑘

+𝑂(𝜖2)⟩
= 𝜖

∑
𝑘≠𝑖

⟨𝜓 (1)
𝑘

,𝐁𝜓 (1)
𝑖

⟩
𝜆
(2)
𝑖
∕𝜆(1)

𝑖
− 𝜆

(2)
𝑘
∕𝜆(1)

𝑘

⟨𝜓 (1)
𝑗

,𝜓
(1)
𝑘

⟩+𝑂(𝜖2)

= 𝜖
⟨𝜓 (1)

𝑗
,𝐁𝜓 (1)

𝑖
⟩

𝜆
(2)
𝑖
∕𝜆(1)

𝑖
− 𝜆

(2)
𝑗
∕𝜆(1)

𝑗

+𝑂(𝜖2) .

Combining this with the inequality above, we have for 𝑗 ≠ 𝑖:

|||𝛼𝑗𝑖||| ≤ 𝜖
1
𝛾𝑖

|||(𝜆(2)𝑖
− 𝜆

(2)
𝑗
)|||√

𝜆
(1)
𝑖
𝜆
(1)
𝑗

|||𝑒⊤𝑗 𝐔⊤
1𝐀𝑒𝑖

|||+𝑂(𝜖2) , (58)

where the constant depends on 1√
𝜆
(1)
𝑖

𝜆
(1)
𝑗

𝛾𝑖

.

We thus have for (52):

𝜆
(2)
𝑗

4

𝑁∑
𝑖=1

𝛼2𝑗𝑖

⎛⎜⎜⎝log𝜇𝑖 − log
⎛⎜⎜⎝
𝜆
(2)
𝑗

𝜆
(1)
𝑗

⎞⎟⎟⎠
⎞⎟⎟⎠
2

=
𝜆
(2)
𝑗

4
𝛼2𝑗𝑗

⎛⎜⎜⎝log𝜇𝑗 − log
⎛⎜⎜⎝
𝜆
(2)
𝑗

𝜆
(1)
𝑗

⎞⎟⎟⎠
⎞⎟⎟⎠
2

+
𝜆
(2)
𝑗

4
∑
𝑖≠𝑗

𝛼2𝑗𝑖

⎛⎜⎜⎝log𝜇𝑖 − log
⎛⎜⎜⎝
𝜆
(2)
𝑗

𝜆
(1)
𝑗

⎞⎟⎟⎠
⎞⎟⎟⎠
2

=𝑂(𝜖2) , (59)

where the constant depends on 𝑐(ln 𝑐)2

min𝑖{𝛾2𝑖 𝜆
(1)
𝑖

}
.

This is because the first term is 𝑂(𝜖2) by

𝛼2𝑗𝑗

⎛⎜⎜⎝log𝜇𝑗 − log
⎛⎜⎜⎝
𝜆
(2)
𝑗

𝜆
(1)
𝑗

⎞⎟⎟⎠
⎞⎟⎟⎠
2

=𝛼2𝑗𝑗

⎛⎜⎜⎝𝜖⟨𝜓 (1)
𝑗

,𝐁𝜓 (1)
𝑗

⟩𝜆(1)𝑗

𝜆
(2)
𝑗

⎞⎟⎟⎠
2

+𝑂(𝜖2) (60)

= 𝜖2𝛼2𝑗𝑗

⎛⎜⎜⎝
𝜆
(1)
𝑗

𝜆
(2)
𝑗

⎞⎟⎟⎠
2

(𝜆(1)
𝑗
𝜆
(1)
𝑗
)−1

(
(𝜆(2)

𝑗
− 𝜆

(2)
𝑗
)𝑒⊤𝑗 𝐔

⊤
1𝐀𝑒𝑗 +𝑂(𝜖)

)2
+𝑂(𝜖2) (61)

using Taylor expansion log(𝑥 + ℎ) = log(𝑥) + ℎ∕𝑥 + 𝑂(ℎ2) for 𝑥 > 0 and sufficiently small ℎ. In addition, noting that (
log𝜇𝑖 − log

(
𝜆
(2)
𝑗

𝜆
(1)
𝑗

))2

≤ 5(ln 𝑐)2 we have that the second term is bounded by:

𝜆
(2)
𝑗

4
∑
𝑖≠𝑗

𝛼2𝑗𝑖

⎛⎜⎜log𝜇𝑖 − log
⎛⎜⎜𝜆

(2)
𝑗

𝜆
(1)

⎞⎟⎟⎞⎟⎟
2

≤
𝜆
(2)
𝑗

4
5(ln 𝑐)2

∑
𝑖≠𝑗

𝛼2𝑗𝑖
⎝ ⎝ 𝑗 ⎠⎠
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≤
5𝜆(2)

𝑗

4
(ln 𝑐)2

∑
𝑖≠𝑗

𝜖2
1
𝛾2
𝑖

(𝜆(2)
𝑖

− 𝜆
(2)
𝑗
)2

𝜆
(1)
𝑖
𝜆
(1)
𝑗

|||𝑒⊤𝑗 𝐔⊤
1𝐀𝑒𝑖

|||2
≤

5
4
𝜖2(ln 𝑐)2

𝜆
(2)
𝑗

𝜆
(1)
𝑗

∑
𝑖≠𝑗

1
𝛾2
𝑖

(𝜆(2)
𝑖

− 𝜆
(2)
𝑗
)2

𝜆
(1)
𝑖

|||𝑒⊤𝑗 𝐔⊤
1𝐀𝑒𝑖

|||2 . (62)

Continuing with a few coarse steps:

𝜆
(2)
𝑗

4
∑
𝑖≠𝑗

𝛼2𝑗𝑖

⎛⎜⎜⎝log𝜇𝑖 − log
⎛⎜⎜⎝
𝜆
(2)
𝑗

𝜆
(1)
𝑗

⎞⎟⎟⎠
⎞⎟⎟⎠
2

≤
5
4
𝜖2

𝑐(ln 𝑐)2

min𝑖{𝛾2𝑖 𝜆
(1)
𝑖
}

∑
𝑖≠𝑗

|||𝑒⊤𝑗 𝐔⊤
1𝐀𝑒𝑖

|||2
≤

5
2
𝜖2

𝑐(ln 𝑐)2

min𝑖{𝛾2𝑖 𝜆
(1)
𝑖
}

(63)

where |||𝜆(2)𝑖
− 𝜆

(2)
𝑗

|||2 ≤ 1 due to the normalization of 𝐖1 and 𝐖2 and ∑𝑖≠𝑗
|||𝑒⊤𝑗 𝐔⊤

1𝐀𝑒𝑖
|||2 ≤ 2‖𝐀𝑒𝑗‖2 ≤ 2 due to ‖𝐀‖ = 1.

Similarly, it can be shown for (54) that

𝑁∑
𝑖=1

𝛼2𝑗𝑖(log𝜇𝑖)
2

⎛⎜⎜⎜⎝
√
𝜇𝑖 −

√√√√√𝜆
(2)
𝑗

𝜆
(1)
𝑗

⎞⎟⎟⎟⎠
2

=𝑂(𝜖2) ,

and the proof is concluded. □

Remark 1. Note that the implied constant 
√
𝑐 ln 𝑐

min𝑖
(
𝛾𝑖

√
𝜆
(1)
𝑖

) might be large, narrowing the scope of Theorem 4. Particularly in our context, 

the matrix 𝐖1 (and 𝐖2) tends to be close to low rank, for which min𝑖
(
𝛾𝑖

√
𝜆
(1)
𝑖

)
is small.

Remark 2. Empirically, we observe that 𝜓 (1)
𝑗

=
∑

𝑖 𝛼𝑗𝑖𝑣𝑖 ≃
∑

𝑖∼𝑗 𝛼𝑗𝑖𝑣𝑖, i.e., only a small number of expansion coefficients 𝛼𝑗𝑖 are non-

negligible, for which 𝜆(1)
𝑖

is close to 𝜆(1)
𝑗

. Therefore, in practice, the implied constant depends on 1∕ min𝑖∼𝑗
(
𝛾𝑖

√
𝜆
(1)
𝑖

)
. Since we are 

usually interested in principal components 𝜓 (1)
𝑗

(i.e., with large 𝜆(1)
𝑗

), the implied constant is typically sufficiently large.

7. Conclusions

In this work, we introduce a new multi-resolution analysis of temporal high-dimensional data with an underlying time-varying 
manifold structure. Our analysis is based on the definition of two composite operators that represent the relation of two aligned 
datasets jointly sampled from two diffeomorphic manifolds in terms of their spectral components. Specifically, we showed that these 
operators not only recover but also distinguish different types of common spectral components of the underlying manifolds and 
that each operator emphasizes different properties. One operator was shown to emphasize common components that are similarly 
expressed in the two manifolds, and the other operator was shown to emphasize the common components that are expressed with 
significantly different eigenvalues. In the context of spatiotemporal data analysis, the application of the operators is analogous to 
low-pass and high-pass filters. Therefore, by applying them in multiple resolutions, we devise a wavelet-like analysis framework. We 
demonstrated this framework on a dynamical system describing a transitory double-gyre flow, showing that such a framework can 
be used for the analysis of non-stationary multivariate time-series.

In addition to spatiotemporal analysis, we showed that the defined composite operators may be useful for multimodal data analysis 
as well. Specifically, we showed application to remote sensing, demonstrating the recovery of meaningful properties expressed by 
different sensing modalities.

In the future, we plan to extend the definition of the operators 𝐒 and 𝐅 from two to more time frames (datasets). In addition, 
since our analysis results in a large number of vectors representing the common components at different scales and time-points, 
we plan to develop compact representations of these components, which may lead to improved, more conclusive results for highly 
non-stationary time-series.

Finally, we remark that in our model, we represent each sample by an undirected weighted graph, and then, analyze the temporal 
sequence of graphs. Another interesting future work would be to investigate our Riemannian composite operators in the context of 
graph neural networks (GNNs) and graph convolutional networks (GCNs) [13,44,66].

Data availability

Data will be made available on request.
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Appendix A. Additional statements

The following equivalent forms of operators 𝐒 and 𝐅 are used in proofs of the theorems.

Proposition 1 (Equivalent Forms of the Operators S and F). We have

𝐒 =𝐖1∕2
1

(
𝐖−1∕2

1 𝐖2𝐖
−1∕2
1

)1∕2
𝐖1∕2

1 =
(
𝐖2𝐖−1

1
)1∕2𝐖1

and

𝐅 = 𝐒1∕2 log
(
𝐒−1∕2𝐖1𝐒−1∕2

)
𝐒1∕2 = log

(
𝐖1𝐒−1

)
𝐒 .

Proof. To show the claim for 𝐒, define the following:

𝐌 =𝐖−1∕2
1 𝐖2𝐖

−1∕2
1 and 𝐌̃ =𝐖2𝐖−1

1 . (64)

Since 𝐖1 and 𝐖2 are positive definite, the matrix 𝐌 is positive definite, and hence 𝐌 and 𝐌̃ are similar via 𝐌 = 𝐖−1∕2
1 𝐌̃𝐖1∕2

1 . 
Denote the eigenvalue and eigenvector matrices of 𝐌 by 𝚲(𝐌) and 𝐕(𝐌) respectively. Therefore, the eigenvalue matrix of 𝐌̃ is 
𝚲(𝐌̃) =𝚲(𝐌), and the right and left eigenvectors are 𝐕(𝐌̃)

𝑅
=𝐖1∕2

1 𝐕(𝐌) and 𝐕(𝐌̃)
𝐿

=𝐖−1∕2
1 𝐕(𝐌) respectively. Thus, we have

𝐌1∕2 =𝐕(𝐌) (𝚲(𝐌))1∕2 (𝐕(𝐌))𝑇 (65)

𝐌̃1∕2 =𝐖1∕2
1 𝐕(𝐌) (𝚲(𝐌))1∕2 (𝐕(𝐌))𝑇 𝐖−1∕2

1

and hence 𝐌̃1∕2 =𝐖1∕2
1 𝐌1∕2𝐖−1∕2

1 . As a result, we have

𝐒 =𝐖1∕2
1 𝐌1∕2𝐖1∕2

1 =𝐖1∕2
1 𝐌1∕2𝐖−1∕2

1 𝐖1 = 𝐌̃1∕2𝐖1 ,

which shows the claim.

The proof for the claim for the operator 𝐅 is similar. Define

𝐍 ∶= 𝐒−1∕2𝐖1𝐒−1∕2 and 𝐍̃ ∶=𝐖1𝐒−1. (66)

Since 𝐒 is positive definite, 𝐍 and 𝐍̃ are similar and their eigenvalues and eigenvectors are related by 𝚲(𝐍̃) =𝚲(𝐍), 𝐕(𝐍̃)
𝑅

= 𝐒1∕2𝐕(𝐍) and 
𝐕(𝐍̃)
𝐿

= 𝐒−1∕2𝐕(𝐍). The matrix logarithm of 𝐍 and 𝐍̃ can then be expressed by:

log(𝐍) =𝐕(𝐍) log
(
𝚲(𝐍))(𝐕(𝐍))𝑇 (67)

log(𝐍̃) =𝐒1∕2𝐕(𝐍) log
(
𝚲(𝐍))(𝐕(𝐍))𝑇 𝐒−1∕2.

Based on these expressions the relationship between the logarithm of the two matrices is log(𝐍̃) = 𝐒1∕2 log(𝐍)𝐒−1∕2. The proof can now 
be concluded by

𝐅 = 𝐒1∕2 log(𝐍)𝐒1∕2 = 𝐒1∕2 log(𝐍)𝐒−1∕2𝐒 = log(𝐍̃)𝐒 . □

Next, for completeness, we explicitly show that the equivalence between definitions 2 and 3 of the pseudo-spectrum in Definition 1

includes a shared pseudo-eigenvector.

Proposition 2. Consider 𝐌 ∈ℝ𝑁×𝑁 and a small 𝜖 > 0. If 𝑣 ∈ℝ𝑁 with ‖𝑣‖2 = 1 s.t. ‖(𝐌 −𝜆𝐈)𝑣‖2 ≤ 𝜖 for 𝜆 ∈ℝ, then there exists 𝐄 ∈ℝ𝑁×𝑁

with ‖𝐄‖ ≤ 𝜖 s.t. (𝐌 +𝐄)𝑣 = 𝜆𝑣.

Proof. Define the following rank one operator:

𝐁𝑢 = −⟨𝑢, 𝑣⟩(𝐌− 𝜆𝐈)𝑣,

where 𝑢 ∈𝐑𝑁 . Then, we have that ‖𝐁‖ ≤ 𝜖 and (𝐌 +𝐁)𝑣 = 𝜆𝑣. □
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A.1. Additional motivation for the operator F

We provide additional motivation for the operator 𝐅 by showing that it captures differences between the diffusion operators 𝐖1
and 𝐖2, through small perturbations of these matrices.

Proposition 3. Assume 𝐖2 =𝐖1 +𝐄 s.t. ‖𝐄𝐖−1
1 ‖ < 1, then 𝐅 ≈ −1

2

(
𝐖2 −𝐖1

)(
𝐖−1

1 𝐖2
)1∕2

.

Proof.

𝐅 = log
(
𝐖1𝐒−1

)
𝐒

= log
(
𝐖1

(
(𝐖2𝐖−1

1 )1∕2𝐖1
)−1)(

𝐖2𝐖−1
1

)1∕2𝐖1

= − 1
2 log

(
𝐖2𝐖−1

1
)(

𝐖2𝐖−1
1

)1∕2𝐖1

= − 1
2 log

(
𝐈+𝐄𝐖−1

1
)(

𝐖2𝐖−1
1

)1∕2𝐖1

≈ − 1
2𝐄𝐖

−1
1

(
𝐖2𝐖−1

1
)1∕2𝐖1

= − 1
2𝐄

(
𝐖−1

1 𝐖2
)1∕2

= − 1
2

(
𝐖2 −𝐖1

)(
𝐖−1

1 𝐖2
)1∕2

(68)

where the approximation is based on a power series of the matrix logarithm, and the transition before last is due to 𝐖2𝐖−1
1 being 

similar to a symmetric matrix, and therefore, diagonalizable, and due to 𝐗−1𝐀1∕2𝐗 =
(
𝐗−1𝐀𝐗

)1∕2
for a diagonalizable matrix 𝐀 and 

an invertible matrix 𝐗. □

This result shows that the operator 𝐅 is related to the differences between the diffusion operators, factored by a term related to 
the Riemannian metric of the space of SPD matrices. More intuitively, we remark that mapping a point from the manifold to the 
tangent space (via the logarithmic map) is the Riemannian counterpart of subtraction in a linear space.

Note that a similar conclusion can be obtained by noting that 𝐄𝐖−1
1 and (𝐖2𝐖−1

1 )1∕2 commute. This leads to 𝐅 ≈
−1

2 (𝐖2𝐖−1
1 )1∕2(𝐖2 −𝐖1). This result is equivalent to the equation in (68), since 𝐅, 𝐖1 and 𝐖2 are symmetric matrices, and therefore:

𝐅 = 𝐅𝑇 ≈
(
−1
2
(𝐖2𝐖−1

1 )1∕2(𝐖2 −𝐖1)
)𝑇

= −1
2
(𝐖2 −𝐖1)

(
(𝐖2𝐖−1

1 )1∕2
)𝑇

= −1
2
(𝐖2 −𝐖1)(𝐖−1

1 𝐖2)1∕2

A follow up paper, [17], demonstrated additional uses for this difference operator, where 𝐅 was applied to feature selection tasks.

Appendix B. 3-dimensional tori example

In this subsection we consider datasets of samples from two 3-dimensional tori. Using these datasets we demonstrate that the 
operators 𝐒 and 𝐅 indeed recover the similarly expressed common components and the differently expressed common components, 
respectively. In addition, in Subsection B.2, we demonstrate that these operators still recover the common components, even when 
modality-specific unique structures exist.

B.1. With common components only

Consider two 3-dimensional tori in two observation spaces, denoted by 1 and 2. Both tori are obtained by sampling the product 
of three 1 manifolds that differ in scaling, which are embedded into two ambient spaces:

1 = 𝑓
(1)
1

(
1) × 𝑓

(2)
1

(
1) × 1 ↦ 1 (69)

2 = 𝑓
(1)
2

(
1) × 𝑓

(2)
2

(
1) × 1 ↦ 2 (70)

where 𝑓 (𝑘)
𝓁 ∶ 1 → 1, ∇𝑓 (𝑘)

𝓁 |𝑥 = 𝛼
(𝑘)
𝓁 ∀𝑥 ∈ 1 and 𝛼(1)1 = 𝛼

(2)
2 , 𝛼(2)1 = 𝛼

(1)
2 . We assume that the embedding into the ambient space 

preserves the order of the 1 manifolds and therefore, these scale differences can be represented by switching two of the main angles 
in the parameterization of the two tori. The samples in the ambient spaces can be explicitly described by the following embedding 
in 4D:
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Fig. 10. Two 3D tori with angles 𝜃1 , 𝜃2 , 𝜃3 . Angles 𝜃1 and 𝜃2 are switched between the tori and angles 𝜃3 is similar. Both tori are colored according to (a) cos(𝜃1), (b) 
cos(𝜃2) and (c) cos(𝜃3).

1 ∋ 𝐱1[𝑖] =

⎧⎪⎪⎨⎪⎪⎩
𝑥𝓁[𝑖] = (𝑅̃+ (𝑅+ 𝑟 cos(𝜃2[𝑖])) cos(𝜃1[𝑖])) cos(𝜃3[𝑖])
𝑦𝓁[𝑖] = (𝑅̃+ (𝑅+ 𝑟 cos(𝜃2[𝑖])) cos(𝜃1[𝑖])) sin(𝜃3[𝑖])
𝑧𝓁[𝑖] = (𝑅+ 𝑟 cos(𝜃2[𝑖])) sin(𝜃1[𝑖])
𝑤𝓁[𝑖] = 𝑟 sin(𝜃2[𝑖])

⎫⎪⎪⎬⎪⎪⎭
(71)

2 ∋ 𝐱2[𝑖] =

⎧⎪⎪⎨⎪⎪⎩
𝑥𝓁[𝑖] = (𝑅̃+ (𝑅+ 𝑟 cos(𝜃1[𝑖])) cos(𝜃2[𝑖])) cos(𝜃3[𝑖])
𝑦𝓁[𝑖] = (𝑅̃+ (𝑅+ 𝑟 cos(𝜃1[𝑖])) cos(𝜃2[𝑖])) sin(𝜃3[𝑖])
𝑧𝓁[𝑖] = (𝑅+ 𝑟 cos(𝜃1[𝑖])) sin(𝜃2[𝑖])
𝑤𝓁[𝑖] = 𝑟 sin(𝜃1[𝑖])

⎫⎪⎪⎬⎪⎪⎭
(72)

where 𝜃1[𝑖], 𝜃2[𝑖], 𝜃3[𝑖] ∈ [0, 2𝜋], 𝑟 = 2, 𝑅 = 7 and 𝑅̃ = 15. In this setting, the radii 𝑅 and 𝑟 are related to the scale parameters 𝛼(1)1 = 𝛼
(2)
2

and 𝛼(2)1 = 𝛼
(1)
2 that define the diffeomorphisms 𝑓 (𝑘)

𝓁 in (69) and (70).

We sample 𝑁 = 2000 points from each torus, {𝐱𝓁[𝑖]}𝑁𝑖=1, 𝐱𝓁[𝑖] ∈ ℝ4, 𝓁 = 1, 2, with point correspondence between the two tori, 
which is obtained through correspondence of the samples of 𝜃1, 𝜃2 and 𝜃3.

The data is visualized in Fig. 10 where projections of the two tori are colored according to the 3 different angles, cos(𝜃1) in 
(a), cos(𝜃2) in (b) and cos(𝜃3) in (c). This figure presents projections of the tori to the following 3-dimensional spaces: ‘xyz’, ‘xyw’ 
and ‘yzw’. In this example, the two modalities, represented by 1 and 2, includes only common components, some of which are 
differently expressed and some are similarly expressed. Specifically, 𝜃3 is related to the similarly expressed common components, as 
depicted by Fig. 10 (c), and 𝜃1 and 𝜃2 are related to the differently expressed common components, as depicted by Fig. 10 (a) and 
(b).

We apply Algorithm 3 to the samples of the two 3-dimensional tori with 𝜎𝓁 = median(𝑑(𝐱𝓁[𝑖], 𝐱𝓁[𝑗])), 𝑖, 𝑗 = 1, ..., 𝑁 , 𝓁 = 1, 2, and 
compute the eigenvectors of the kernels 𝐖1, 𝐖2, as well as the operators 𝐒 and 𝐅 and their eigenvectors. These eigenvectors compose 
the embedding of each operator. The eigenvectors are denoted in the following figures by 𝜓 (1)

𝑛 , 𝜓 (2)
𝑛 , 𝜓 (𝐒)

𝑛 and 𝜓 (𝐅)
𝑛 , respectively, and 

are ordered according to a decreasing magnitude of their corresponding eigenvalues, denoted by 𝜆(1)𝑛 , 𝜆(2)𝑛 , 𝜆(𝐒)𝑛 and 𝜆(𝐅)𝑛 , respectively.

To demonstrate that the operator 𝐒 indeed emphasizes the similarly expressed common components and that 𝐅 emphasizes the 
differently expressed common components, we compare their eigenvectors with the eigenvectors of 𝐖1 and 𝐖2 and with the angles 
𝜃1, 𝜃2 and 𝜃3 parameterizing the tori. Note that the sign of the eigenvalues of 𝐅 is meaningful and provides information on the source 
of the dominant difference components, as a demonstrated by Theorem 2. Therefore, in order to clearly distinguish between the 
largest positive and smallest negative eigenvalues, an eigenvector of 𝐅 that correspond to the 𝑘th largest (positive) eigenvalue is 
denoted by 𝜓 (𝐅)

𝑘
and an eigenvector that corresponds to the 𝓁th smallest negative eigenvalue is denoted by 𝜓 (𝐀)

−𝓁 mod 𝑁
, throughout 

this section.

Fig. 11 presents the two tori, top and bottom in Fig. 11 (a) and in Fig. 11 (b), colored according to these eigenvectors and the torus 
angles. The vector that each torus was colored by is denoted in the title of each plot. In Fig. 11 (a), the tori are colored according 
to the two leading eigenvectors of 𝐒, the leading eigenvector of 𝐖1 (top) and 𝐖2 (bottom) and the cosine of 𝜃3, from left to right. 
In Fig. 11 (b), the tori are colored according to two leading eigenvectors of 𝐅 (corresponding to positive and negative eigenvalues), 
eigenvector number 7 of 𝐖1 (top) and 𝐖2 (bottom), the cosine of 𝜃1 and the cosine of 𝜃2, from left to right.

Fig. 11 (a) depicts that the operator 𝐒 captures the similarly expressed common component, i.e. 𝜃3, the angle that is related to 
the 1 manifold that does not undergo any transformation between the two observation spaces. This is indicated by similarity of the 
torus colors (up to some rotation), when comparing the coloring according to the eigenvectors of 𝐒 with the coloring according to 
cos(𝜃3). In addition, the torus colors are also very similar when colored according to the second eigenvectors of 𝐖1 and 𝐖2. This 
implies that 𝜃3 is highly expressed by both kernels 𝐖1 and 𝐖2, meaning that it is a dominant component in both tori.

Note that the first eigenvectors of 𝐖1 and 𝐖2 (and in this example also of 𝐒) are related to the point density on each torus, which 
is of less interest in this example, and were omitted therefor.

In contrast, Fig. 11 (b) depicts that the operator 𝐅 captures the differently expressed common components, i.e. 𝜃1 and 𝜃2, the 
angles that are related to 1 manifolds that undergo transformations between the two observation spaces. This is indicated by the 
similarity in the torus colors, when comparing the coloring according to the eigenvectors of 𝐅 with the coloring according to cos(𝜃1)
and cos(𝜃2). Note that this figure also nicely demonstrates the connection between the sign of the eigenvalues of 𝐅 and the source of 
the dominant component. For example, the angle 𝜃1 is a more dominant component in torus 1, i.e. its corresponding 1 manifold 
has a larger radius compared with 2, and this angle is captured by an eigenvector of 𝐅 that corresponds to a positive eigenvalue. In 
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Fig. 11. The two tori colored according to eigenvectors of the operators and kernels and according to the torus angles. (a) Eigenvectors and angle that are captured 
by the operator 𝐒, (b) eigenvectors and angles that are captured by the operator 𝐅.

contrast, the eigenvector that corresponds to a negative eigenvalue of 𝐅 captures the angle 𝜃2, which is a more dominant component 
in torus 2.

Note that in kernels 𝐖1 and 𝐖2 the angles 𝜃1 and 𝜃2 are expressed only in less dominant eigenvectors (corresponding to much 
smaller eigenvalues). Specifically, 𝜃1 and 𝜃2 are first captured by 𝐖1 only in eigenvector number 6 (and 7 as presented in the figure) 
and eigenvector number 17, respectively, and their location in 𝐖2 is similar but reversed. Therefore, this demonstrates that the 
operator 𝐅 significantly emphasized these differently expressed common components. We note in addition, that the eigenvectors of 
𝐅 that correspond to the first (largest) positive and negative eigenvalues were highly related to 𝜃1 and 𝜃2 as well, specifically, they 
captured sin(𝜃1) and sin(𝜃2), and were omitted for brevity.

B.2. With unique components

Consider now a slightly different setting of the two 3D tori, in which the third 1 manifold undergoes two different diffeomor-

phisms, which lead to a unique structure in each observation space. The formulation for this setting is given by:

1 = 𝑓
(1)
1

(
1) × 𝑓

(2)
1

(
1) ×1 ↦ 1 (73)

2 = 𝑓
(1)
2

(
1) × 𝑓

(2)
2

(
1) ×2 ↦ 2 (74)

where 1 and 2 denote two different unique structures, 𝑓 (𝑘)
𝓁 ∶ 1 → 1, ∇𝑓 (𝑘)

𝓁 |𝑥 = 𝛼
(𝑘)
𝓁 ∀𝑥 ∈ 1 and 𝛼(1)1 = 𝛼

(2)
2 , 𝛼(2)1 = 𝛼

(1)
2 . We assume 

that the embedding into the ambient spaces express these unique structures as different permutations of the angel corresponding to 
this 1 manifold. In addition, similarly to Subsection B.1, we assume that the scale differences between the first two manifolds can 
be represented by switching two of the main angles in the parameterization of the two tori. In this case, the samples in the ambient 
spaces can be explicitly described by the following embedding in 4D:

1 ∋ 𝐱1[𝑖] =

⎧⎪⎪⎨⎪⎪
𝑥𝓁[𝑖] = (𝑅̃+ (𝑅+ 𝑟 cos(𝜃2[𝑖])) cos(𝜃1[𝑖])) cos(𝜃3[𝑖])
𝑦𝓁[𝑖] = (𝑅̃+ (𝑅+ 𝑟 cos(𝜃2[𝑖])) cos(𝜃1[𝑖])) sin(𝜃3[𝑖])
𝑧𝓁[𝑖] = (𝑅+ 𝑟 cos(𝜃2[𝑖])) sin(𝜃1[𝑖])
𝑤𝓁[𝑖] = 𝑟 sin(𝜃2[𝑖])

⎫⎪⎪⎬⎪⎪
(75)
⎩ ⎭
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Fig. 12. Two 3D tori colored according to (a) cos(𝜃3) and (b) cos(𝜃4). Angles 𝜃3 and 𝜃4 are unique to each torus.

Fig. 13. The two tori (top and bottom) colored according to the eigenvectors of 𝐅 and 𝐒 and according to sin(𝜃1) and sin(𝜃2).

2 ∋ 𝐱2[𝑖] =

⎧⎪⎪⎨⎪⎪⎩
𝑥𝓁[𝑖] = (𝑅̃+ (𝑅+ 𝑟 cos(𝜃1[𝑖])) cos(𝜃2[𝑖])) cos(𝜃4[𝑖])
𝑦𝓁[𝑖] = (𝑅̃+ (𝑅+ 𝑟 cos(𝜃1[𝑖])) cos(𝜃2[𝑖])) sin(𝜃4[𝑖])
𝑧𝓁[𝑖] = (𝑅+ 𝑟 cos(𝜃1[𝑖])) sin(𝜃2[𝑖])
𝑤𝓁[𝑖] = 𝑟 sin(𝜃1[𝑖])

⎫⎪⎪⎬⎪⎪⎭
(76)

where 𝜃1[𝑖], 𝜃2[𝑖], 𝜃3[𝑖], 𝜃4[𝑖] ∈ [0, 2𝜋], 𝑟 = 2, 𝑅 = 7 and 𝑅̃ = 15. Note that the difference between the parameterization in this setting 
compared with the setting in Subsection B.1 is the angle 𝜃4, which differs from 𝜃3. These two angles are visualized in Fig. 12, which 
presents projections of the tori to the following 3-dimensional spaces: ‘xyz’, ‘xyw’ and ‘yzw’. This figure demonstrate that 𝜃3 is unique 
to 1 and that 𝜃4 is unique to 2, since coloring 2 according to 𝜃3 and 1 according to 𝜃4 leads to random coloring, as presented in 
the right plot of Fig. 12 (a) and the left plot of Fig. 12 (b), respectively.

In summary, the two modalities, represented by 1 and 2, include common components that are differently expressed, which 
are related to 𝜃1 and 𝜃2 (similarly to the previous setting), and a unique component, which is related to 𝜃3 and 𝜃4.

We sample 𝑁 = 2000 points from each torus similarly to Subsection B.1 and apply Algorithm 3 with 𝜎𝓁 = median(𝑑(𝐱𝓁[𝑖], 𝐱𝓁[𝑗])), 
𝑖, 𝑗 = 1, … , 𝑁 , 𝓁 = 1, 2. We then compute the eigenvectors of the operators 𝐒 and 𝐅.

Fig. 13 presents the two tori (top and bottom) colored according to the two leading eigenvectors of 𝐅 (corresponding to positive 
and negative eigenvalues), the leading eigenvector of 𝐒, the sine of 𝜃1 and the sine of 𝜃2, from left to right. Note that this figure 
presents the sine of the angles compared with a different eigenvector of 𝐅 as a complementary example to Fig. 11, since the two 
leading eigenvectors of 𝐅 (with either negative or positive eigenvalues) capture the sine and cosine of the differently expressed 
angles.

Fig. 13 depicts that the operator 𝐅 captures the differently expressed common components, i.e. 𝜃1 and 𝜃2. This is indicated by the 
similarity in the torus colors, when comparing the coloring according to the eigenvectors of 𝐅 with the coloring according to sin(𝜃1)
and sin(𝜃2). Note the connection between the sign of the eigenvalues of 𝐅 and the source of the dominant component, as depicted by 
the two left-most and two right-most plots in this figure.

In addition, in this setting, the operator 𝐒 recovers the same common components, 𝜃1 and 𝜃2, since there are no similarly 
expressed common components. However, the coloring of the middle plot in Fig. 13 depicts that the leading eigenvector of 𝐒 is not 
identical to either one of the angles. This is due to rotations of eigenvector subspaces of 𝐒, which stem from the symmetry of the 
two tori problem. Due to the symmetry, the angles 𝜃1 and 𝜃2 are expressed by the eigenvectors of both kernels, 𝐖1 and 𝐖2, but in 
a different complementary order. For example, if 𝜃1 appears in eigenvector number 6 of 𝐖1 and eigenvector number 18 of 𝐖2, then 
𝜃2 will appear in eigenvector number 18 of 𝐖1 and eigenvector number 6 of 𝐖2, and with similar complementary eigenvalues. Since 
according to Theorem 1 the eigenvalues of 𝐒 are given by 

√
𝜆(1)𝜆(2), where 𝜆(1) and 𝜆(2) correspond to common eigenvectors, the 

eigenvector of 𝐒 that captures 𝜃1 and the eigenvector of 𝐒 that captures 𝜃2 have the same eigenvalue, with a multiplicity of 2. This 
may lead to rotation of the eigenvectors in the eigenspace of eigenvalue 

√
𝜆(1)𝜆(2). As a result, the computed eigenvectors correspond 
28



T. Shnitzer, H.-T. Wu and R. Talmon Applied and Computational Harmonic Analysis 68 (2024) 101583
to a combination of 𝜃1 and 𝜃2, as depicted by the middle plot in Fig. 13. Moreover, note that this explains why the middle-top and 
middle-bottom plots appear to be colored similarly.

Finally, note that in this example, the leading eigenvectors of 𝐖1 and 𝐖2 capture angles 𝜃3 and 𝜃4, respectively, and that angles 
𝜃1 and 𝜃2 first appear only in eigenvectors number 6 and 18 of 𝐖1, respectively, and similarly for 𝐖2 but in reversed order. This 
demonstrates that even in the presence of unique structures in each torus, the operators 𝐒 and 𝐅 successfully recovers the common 
components, and that these common components are significantly enhanced compared with the other unique components.
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