
Signal Processing 216 (2024) 109308

A
0

Contents lists available at ScienceDirect

Signal Processing

journal homepage: www.elsevier.com/locate/sigpro

Graph signal interpolation and extrapolation over manifold of Gaussian
mixture
Itay Zach a,∗, Tsvi G. Dvorkind b, Ronen Talmon a

a Viterbi Faculty of Electrical and Computer Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
b RAFAEL Advanced Defense Systems LTD, Haifa, 31021, Israel

A R T I C L E I N F O

Dataset link: github.com/itayzach/RoMix

Keywords:
Graph signal processing
Graph signal interpolation
Spectral graph theory
Reproducing kernel Hilbert space
Gaussian mixture model
Data manifolds

A B S T R A C T

Signals with an underlying irregular geometric structure are prevalent in modern applications and are often
well-represented using graphs. The field of graph signal processing has emerged to accommodate such signals’
analysis, processing, and interpolation. In this paper, we address the latter, where signal samples are given
only on a subset of graph nodes, and the goal is to estimate the graph signal on the remaining nodes. In
addition, we consider a related extrapolation task in which new graph nodes that were not part of the original
graph are added, and the goal is to estimate the graph signal on those nodes as well. We present a new
approach for both the interpolation and extrapolation tasks, which is based on modeling the graph nodes as
samples from a continuous manifold with a Gaussian mixture distribution and the graph signal as samples of
a continuous function in a reproducing kernel Hilbert space. This model allows us to propose an interpolation
and extrapolation algorithm that utilizes the closed-form expressions of the Gaussian kernel eigenfunctions.
We test our algorithm on synthetic and real-world signals and compare it to existing methods. We demonstrate
superior or on-par accuracy results achieved in significantly shorter run times.
1. Introduction

1.1. Graph signal processing overview

Classical Digital Signal Processing (DSP) based on Fourier analysis
has been the pillar framework for processing digital signals in numerous
fields for the last decades. Communication systems, RADAR applica-
tions, and medical imaging are just a handful of examples of DSP’s vast
influence. The signals in these fields are prototypically sampled from
uniform, regular grids, e.g., linear or spherical sensor arrays, where the
classical DSP tools naturally apply. However, signals in various other
fields describing biological connections, transportation systems, and
sensor networks often do not follow a similar grid structure but rather
have an irregular network structure. Therefore, classical DSP tools
cannot be applied to these signals as is. Recently, the emerging field
of Graph Signal Processing (GSP) [1,2] promoted the representation of
irregular structures of networks using graphs [3], where the network
elements are defined as the graph nodes and their mutual relationships
by the graph edges. By associating the signal coordinates to the graph’s
nodes, an object termed graph signal is defined. To process and analyze
these graph signals, classical DSP tools, such as filtering, denoising,
and the Fourier and Wavelet transforms, have been extended to signals
defined over graphs. These extensions have opened the door to various

∗ Corresponding author.
E-mail address: itay.zach@campus.technion.ac.il (I. Zach).

transformative applications, such as the prediction of protein-to-protein
interactions in biological networks [4], analysis of traffic congestion
in transportation systems [5], and power grid load monitoring [6], to
name just a few. Furthermore, these GSP developments facilitated the
emergence of geometric deep learning [7].

1.2. Graph signal interpolation and extrapolation

In this work, we focus on two of the most prominent tasks in the
field of GSP: graph signal interpolation and graph signal extrapolation.
In the first task, only a subset of the graph signal values is given, and
the goal is to estimate the graph signal on the remaining set of nodes.
For instance, consider the problem of estimating the received power of
a Radio Frequency (RF) signal in a vast variable topographic terrain
based on measurements from only a handful of scattered sensors. The
geographic landscape and the sensor network constellation can be
described using a graph as follows. Each graph node is attributed to
a set of features of a point in the terrain, e.g., its 𝑥, 𝑦, 𝑧 coordinates.
The graph edges represent some notion of affinity between the terrain
points’ features. Accordingly, the graph signal is defined on the graph
nodes as the received signal power in each point, which is known
only on the nodes corresponding to the sensor network. Estimating the
vailable online 30 October 2023
165-1684/© 2023 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.sigpro.2023.109308
Received 1 November 2022; Received in revised form 20 October 2023; Accepted 2
6 October 2023

https://www.elsevier.com/locate/sigpro
http://www.elsevier.com/locate/sigpro
https://github.com/itayzach/RoMix
https://github.com/itayzach/RoMix
https://github.com/itayzach/RoMix
https://github.com/itayzach/RoMix
https://github.com/itayzach/RoMix
https://github.com/itayzach/RoMix
https://github.com/itayzach/RoMix
https://github.com/itayzach/RoMix
https://github.com/itayzach/RoMix
https://github.com/itayzach/RoMix
https://github.com/itayzach/RoMix
https://github.com/itayzach/RoMix
https://github.com/itayzach/RoMix
https://github.com/itayzach/RoMix
https://github.com/itayzach/RoMix
https://github.com/itayzach/RoMix
https://github.com/itayzach/RoMix
https://github.com/itayzach/RoMix
https://github.com/itayzach/RoMix
https://github.com/itayzach/RoMix
https://github.com/itayzach/RoMix
https://github.com/itayzach/RoMix
https://github.com/itayzach/RoMix
https://github.com/itayzach/RoMix
https://github.com/itayzach/RoMix
mailto:itay.zach@campus.technion.ac.il
https://doi.org/10.1016/j.sigpro.2023.109308
https://doi.org/10.1016/j.sigpro.2023.109308
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2023.109308&domain=pdf

Signal Processing 216 (2024) 109308I. Zach et al.
received signal power over the entire terrain can then be recast as a
task of graph signal interpolation. We will address this application in
our work, yet, there exist various other applications of graph signal
interpolation in the literature. For instance, matrix completion for
recommendation systems [8,9], temperature recovery [10] and power
restoration in energy harvesting sensor networks [11].

In the second task, graph signal extrapolation, the graph structure
is expanded beyond the given set of nodes and edges, and the goal is
to estimate the graph signal values of those newly introduced nodes.
Unlike the interpolation task, the nodal information and connectivity of
the joining nodes are not given in advance. The extrapolating function
should infer the graph signal values of the joining nodes based on the
original graph signal and graph structure alone, in an online fashion,
without a change of parameters. For instance, following the RF signal
power estimation example, expanding the terrain with new points and
estimating the signal power on them can be recast as a graph signal
extrapolation problem.

1.3. Literature review

Previous methods that address graph signal interpolation can be
roughly divided into two categories: methods that learn the graph
topology jointly with the interpolation procedure (e.g., [12,13]) and
methods that assume some a-priori known graph topology. We focus
on the latter. In some works (e.g., [14,15]), the interpolation procedure
highly depends on the sampling process of the graph signal, namely, the
subset of nodes on which the graph signal is known. In these works,
the proposed interpolating algorithms might be irrelevant if the subset
is given at random. Conversely, other works consider the case of an
arbitrary subset of available values from which the graph signal is
interpolated and can therefore be more robust. For instance, [16,17]
utilize Diffusion maps [18] for the interpolation procedure, where [16]
also combines the Nyström method [19] in the interpolation process.
The work in [9] relies on the eigenvectors of the graph Laplacian
matrix to impose smoothness on the interpolated graph signal. The
work in [20] employs a variational spline in Paley–Wiener space as
the model for the interpolating function [21], while utilizing Green’s
function of the regularized Laplacian. In a recent line of work, e.g., [22–
24], the interpolation is performed in a Reproducing Kernel Hilbert
Space (RKHS) [25–28]. In [22,23], the Representer theorem [29] is
used, and in [24], a basis for the RKHS termed ‘‘graph basis functions’’
is defined. For a comprehensive review of graph signal interpolation
methods, see [30].

The extrapolation problem is also discussed in the literature, how-
ever not always addressed together with an accompanying interpola-
tion procedure. In [31,32], for instance, the authors suggest schemes
where the connectivity of the newly introduced nodes is learned from
data. In [31], the authors apply kernel regression over graphs to
obtain the extrapolated graph signal. The method accounts for the
possibility of the extrapolated graph signal being generated by a differ-
ent physical phenomenon than the given measurements. In [33], the
authors use a directed graph from which Diffusion maps embeddings
are obtained. Then, the authors apply the Nyström method to achieve
the extrapolated graph signal. In [34] the authors follow the work
of [31], but approximate the kernel using Random Fourier Features
(RFF) [35]. While all the aforementioned works present extrapolation
schemes, the designed models are discrete. Moreover, neither pro-
vides an interpolation procedure to accommodate missing graph signal
values.

Nevertheless, various other works suggest an extrapolation pro-
cedure accompanied by an interpolation method that indeed accom-
modates such missing graph signal values. For example, in [36], the
authors perform matrix completion (i.e., interpolation) and extrapola-
tion in an RKHS composed from the Kronecker product of the matrix
rows RKHS and matrix columns RKHS. For instance, in a user-movie
2

rating matrix completion and extrapolation task, the function space
over the users would be the rows RKHS, and the function space over the
movies would be along the columns. The work in [37] also utilizes an
RKHS model to interpolate and extrapolate graph signals. The authors
suggest a privacy-aware method that relies on RFF with various kernels
while utilizing an online Multi Kernel Learning (MKL) framework to
obtain the interpolated and extrapolated graph signals. While these
works provide both interpolation and extrapolation procedures, they
assume the graph affinities are known in advance. Moreover, neither
suggests a continuous domain approach nor a parametric model for the
graph nodes’ distribution.

1.4. Motivation

In order to capture the underlying geometric structure of data and
incorporate it into interpolation and extrapolation schemes, various
works in the GSP literature utilize a kernel in an RKHS. The construc-
tion of the kernel varies across methods and applications and depends
on whether or not the affinities in the data are naturally defined.

When the affinities of the graph are given, or naturally arise from
the problem at hand, the kernel can be constructed as a function of the
known affinities (e.g., [22–24,31,34,36,37]). For instance, in [22,23]
the kernel is constructed as a function of the Laplacian, and in [37]
the kernel is constructed as a function of the adjacency matrix. In [24],
the connectivity is captured by translations of a graph basis function,
where the translations are inferred from the Laplacian eigenvectors. For
translations on graphs see e.g. [1].

Conversely, in many applications, geometric structure exists in the
data but is not immediately apparent. A common assumption in these
cases, termed the manifold assumption, is to assume that the data lies
on a low dimensional manifold [38–40]. A natural way to approximate
the manifold is by constructing a graph using a kernel function [1]. For
instance, in the sensors network presented in Section 1.2, it is possible
to reveal the underlying geometric structure by constructing a graph
where each node describes a sensor. Some properties of the sensors can
be aggregated into a feature vector for each sensor (such as its 𝑥, 𝑦, 𝑧
coordinates or line of sight existence), and then incorporate the feature
vectors into a kernel function. The adjacency matrix of the graph can
then be constructed from the kernel function.

All the aforementioned works that utilize an RKHS for interpola-
tion and extrapolation (cf. [22–24,31,34,36,37]) assume the affinities
between the graph nodes are known, or naturally defined. Furthermore,
the previous works obtain a discrete perspective for their models and
neither provides a model for the nodal information probability distri-
bution. In this work, we present a continuous domain approach, in
which we capture the underlying structure and nodal information by
the eigenfunctions of a kernel, and by a parametric model for the nodal
distribution. As the structural information is captured in traditional GSP
by the adjacency matrix and its eigenvectors, or the Laplacian matrix
with its eigenvectors, here however, we capture it by the continuous
kernel and its eigenfunctions. In fact, we interpret the graph adjacency
matrix with its eigenvectors as the discrete counterpart of a continuous
kernel with its eigenfunctions. By utilizing the kernel eigenfunctions
together with the graph nodal distribution, we establish the continuous
model and corroborate it by performing interpolation and extrapolation
of graph signals.

1.5. Main contributions

In analogy with digital (discrete) signals and analog (continuous)
signals in classical DSP, we adopt the manifold assumption [38–40]
and view the graph nodes as samples from a continuous manifold. We
assume that these nodes admit a Gaussian Mixture Model (GMM) [41]
on the manifold and define a corresponding RKHS with a Gaussian
kernel. If the approximation of the manifold with a GMM in the ambient
space is poor, we propose to embed the manifold into a latent space.
The graph signals are then described as samples of continuous functions

Signal Processing 216 (2024) 109308I. Zach et al.

p
a
o
r
m
d

1

w
a
R
l
I
a
e

2

(
(

2

o

r
d
b
T
t
m
2

a

a
m

l
t
v
t
o
i

𝐋

w
p
t
d
t
a
b
a
a

2

t
h
m
p
p



w
d

f

2

d
t
s
t

defined on the manifold. Under this model, closed-form expressions
of the eigenfunctions of the Gaussian kernel exist (see Section 3).
Based on these closed-form expressions, we propose an algorithm for
graph signal interpolation and extrapolation and provide some theo-
retical justifications. We test our algorithm on several problems and
demonstrate superior or on-par interpolation and extrapolation re-
sults compared to existing baselines. Furthermore, we show that our
approach is computationally more efficient and requires shorter run
times.

In this work, we focus on the cases where the geometric structure of
the data is not immediately apparent, i.e., the graph adjacency matrix is
not given nor is it naturally defined. If the geometric structure is readily
available, it is possible to incorporate it into the kernel as additional
features, either directly in the ambient space or in a latent space. These
scenarios were not explored in this study.

We summarize the novelties and contributions as follows.

(C1) We propose a novel continuous model for discrete graph signals
when the graph connectivity is not immediately apparent.

(C2) We propose a nodal distribution approximation based on a Gaus-
sian mixture model on a manifold, either in ambient space or in
latent space.

(C3) Based on the continuous model and the nodal distribution approx-
imation, we propose a low computational complexity algorithm
for both interpolation and extrapolation of graph signals.

We mention a related line of work that utilizes the Kriging ap-
roach [42] to extrapolate functions using various methods of Oper-
tional Kriging in a Hilbert space [43–45]. While this model resembles
urs, in [45], the function to be extrapolated is modeled by a Gaussian
andom field in a Hilbert space, whereas in our setup, the Bayesian
odel is for the distribution of the nodes and the graph signal is
eterministic.

.6. Outline

The remainder of the paper is organized as follows. In Section 2,
e introduce some preliminaries on GSP, the manifold assumption,
nd RKHS theory. In Section 3, we present our model that we term
KHS over Manifold of Gaussian Mixture (RoMix), where we establish

inks to the Gaussian kernel and to the manifold of Gaussian mixture.
n Section 4, we present the algorithm for graph signal interpolation
nd extrapolation based on the RoMix model. Section 5 shows the
xperimental results, and finally, in Section 6, we conclude our work.

. Preliminaries

In this section, we present preliminaries on graphs and graph signals
Section 2.1), the manifold assumption (Section 2.2), and RKHS theory
Section 2.3).

.1. Graphs and graph signals

An undirected1 weighted graph 𝐺 = ( ,  ,𝐀) is specified by its set
f nodes (also termed ‘‘vertex set’’)  of size || = 𝑛, and its edge set
. Graph-signal is defined as a map 𝑠 ∶  → R, and it is commonly
epresented as a vector 𝒔 ∈ R𝑛. The graph-adjacency matrix, 𝐀 ∈ R𝑛×𝑛,
epicts the weights on each edge and describes the pairwise relations
etween the graph vertices. For undirected graphs, 𝐀 is symmetric.
he graph adjacency, alongside its eigenvectors, enables numerous GSP
asks [46–49]. For instance, in [46], the eigenvectors of the adjacency
atrix are promoted to define the Graph Fourier Transform (GFT) [1,
], rather than the eigenvectors of the graph Laplacian (e.g., [1]) and

1 Directed graph can generally be considered, however, will not be
ddressed in this work.
3

p

in [48], graph signals are filtered by manipulating the spectrum of
the graph adjacency. In many applications, the edge weights are not
naturally defined. Therefore, the graph adjacency matrix 𝐀 is generated
from an application-dependent kernel function 𝐾 ∶  ×  → R which
captures the pairwise similarities between the nodes [1]. For instance,
in a social network, where each node 𝑣𝑖 represents a user, 𝐾(𝑣𝑖, 𝑣𝑗) can
return the number of mutual social connections as the weight of the
connected edge. In other cases, 𝑣𝑖 and 𝑣𝑗 can be associated with some
feature vectors 𝒗𝑖 ∈ R𝑑 , and 𝒗𝑗 ∈ R𝑑 while the kernel function is some
known positive semi-definite expression 𝐾 ∶ R𝑑 ×R𝑑 → R. We focus on
this latter setup.

For every pair of nodes 𝑣𝑖, 𝑣𝑗 ∈  connected by the edge (𝑖, 𝑗) ∈  ,
the (𝑖, 𝑗)-th entry of 𝐀 is given by:

𝐀𝑖,𝑗 = 𝐾(𝑣𝑖, 𝑣𝑗). (1)

An important interpretation of the adjacency matrix is that it can serve
as a graph shift operator. This interpretation allows defining a Fourier
transform for graphs via its set of eigenvalues and eigenvectors [46].

The degree matrix is defined by 𝐃 = diag(𝐀𝟏), where 𝟏 ∈ R𝑛 is the
ll-ones vector, and diag() is the operation of constructing a diagonal
atrix.

One of the most important matrices in graph theory, and particu-
arly in GSP, is the (graph) Laplacian [3]. There are many utilities for
he Laplacian in the literature. Specifically, its eigenvectors and eigen-
alues can also be used in the definition of the GFT [1,2], similarly to
he graph adjacency’s [46]. There are several commonly-used variants
f the Laplacian. We focus on the normalized graph Laplacian, which
s defined as follows:

= 𝐈 − 𝐃−1∕2𝐀𝐃−1∕2, (2)

here 𝐈 is the 𝑛× 𝑛 identity matrix. The GFT relies on the eigendecom-
osition of the Laplacian, which is generally computed in (𝑛3). Hence,
he ability to calculate the GFT when 𝑛 is large is computationally
emanding. Several approaches were suggested in order to mitigate
his shortcoming. For instance, [43] suggests a fast algorithm that
pproximates the GFT, and [50] presents an exact fast algorithm for
ipartite graphs or graphs with symmetries. In Section 5, we utilize our
lgorithm in order to approximate the eigenvectors of the Laplacian in
n efficient manner.

.2. The manifold assumption

Our model, RoMix, relies on the commonly-used manifold assump-
ion [38–40]. This assumption states that real-world data in some
igh-dimensional ambient space  lie on, or close to, a low-dimensional
anifold  ⊂  . Suppose the ambient space  is equipped with a
robability distribution 𝑃 , and the manifold is the support of this
robability distribution. Formally,

= supp(𝑃) = {𝑥 ∈  ∣ 𝑃 (𝑥) ≠ 0} ⊂  ,

𝑃 () = ∫
𝑝(𝑥)𝑑𝑥 = 1,

(3)

here 𝑝 is the probability density, i.e., 𝑑𝑃 (𝑥) = 𝑝(𝑥)𝑑𝑥. Naturally, the
ata distribution 𝑃 is unknown and is usually modeled or estimated.

In Section 3 we present the usage of this assumption and our model
or the probability distribution 𝑃 .

.3. Reproducing kernel Hilbert space

A kernel function is a symmetric, positive semi-definite function
efined over a set  , denoted by 𝐾 ∶  ×  → R. In our work,  is
he ambient space in which the manifold  lies. An RKHS is a Hilbert
pace of functions over  which is associated with a kernel 𝐾. We skip
he formal definition for RKHS as it is not directly used in our work and

resent it in Appendix A. Instead, we present an alternative definition

Signal Processing 216 (2024) 109308I. Zach et al.

b
t
k

k

(

w
t

e

𝑓

𝑓
a
r

⟨

‖

i
m

S
t
a

t


c
i

s
d
w

𝑠

c
e
i

e
t
f
w
d
F
f
d
u

3

k

𝐀

m

𝐾

that relies on the fact that every RKHS has a unique kernel and vice-
versa (see Appendix A). To emphasize the one-to-one correspondence
between the kernel function 𝐾 and its RKHS, we denote the RKHS
y 𝐾 . The alternative definition we use in our work is derived from
he space 2

𝑝() and an integral operator that is associated with the
ernel 𝐾. 2

𝑝() is the space of square integrable real functions over
 with respect to the probability measure 𝑃 presented in (3). The
inner product in 2

𝑝() between 𝑓, 𝑔 ∈ 2
𝑝() is given by ⟨𝑓, 𝑔⟩2

𝑝
=

∫ 𝑓 (𝑥)𝑔(𝑥)𝑝(𝑥)𝑑𝑥.
The integral operator 𝐿𝐾 ∶ 2

𝑝() → 2
𝑝() is associated to the

ernel 𝐾 and is given by:

𝐿𝐾𝑓)(𝑥) = ∫
𝐾(𝑥, 𝑦)𝑓 (𝑦)𝑝(𝑦)𝑑𝑦. (4)

It can be shown that the eigenfunctions of (4) form an orthonormal
basis for the RKHS with a discrete spectrum which consists of positive
eigenvalues that decay to zero (the spectral theorem, Ch. 3 of [26]).
This yields an alternative definition for the RKHS:

𝐾 =

{

𝑓 ∈ 2
𝑝() ||

|

𝑓 =
∞
∑

𝑚=0
𝑐𝑚𝜙𝑚 with

(

𝑐𝑚
√

𝜆𝑚

)

∈ 𝓁2

}

,

here {𝜆𝑚}∞𝑚=0, {𝜙𝑚}
∞
𝑚=0 are the eigenvalues and eigenfunctions, respec-

ively.
Therefore, for any function 𝑓 ∈ 𝐾 , there exists a unique set of

xpansion coefficients {𝑐𝑚}∞𝑚=0 ∈ R such that:

(𝑥) =
∞
∑

𝑚=0
𝑐𝑚𝜙𝑚(𝑥), 𝑐𝑚 = ⟨𝑓, 𝜙𝑚⟩2

𝑝
, ∀𝑥 ∈  . (5)

As a Hilbert space, 𝐾 is endowed with an inner product ⟨⋅, ⋅⟩𝐾
. Let

, 𝑔 ∈ 𝐾 where 𝑓 =
∑

𝑚 𝑐𝑚𝜙𝑚 and 𝑔 =
∑

𝑚 𝑐
′
𝑚𝜙𝑚 with 𝑐𝑚 = ⟨𝑓, 𝜙𝑚⟩2

𝑝
nd 𝑐′𝑚 = ⟨𝑔, 𝜙𝑚⟩2

𝑝
. The inner product and the induced norm are

espectively given by:

𝑓, 𝑔⟩𝐾
=

∞
∑

𝑚=0

𝑐𝑚𝑐′𝑚
𝜆𝑚

, (6)

𝑓‖𝐾
=
(

∞
∑

𝑚=0

𝑐2𝑚
𝜆𝑚

)1∕2
. (7)

Since {𝜆𝑚} are all positive and decay to zero, in order for the
nduced norm (7) to be convergent, the function expansion coefficients
ust decay faster than the eigenvalues, i.e., (𝑐𝑚∕

√

𝜆𝑚) ∈ 𝓁2. This
constraint on the norm (7) can provide a measure of the ‘‘smoothness’’
of a function in the RKHS over its domain.

3. Graph-signals as functions in RoMix

In this section, we present our model, RoMix. Consider a graph
𝐺 = ( ,  ,𝐀) with 𝑛 nodes,  = {𝑣𝑖}𝑛𝑖=1, as in Section 2.1, with the graph
adjacency matrix 𝐀 generated from a kernel function 𝐾 ∶  ×  → R
as in (1). We assume the following:

Assumption 3.1 ( are Samples of ). We adopt the manifold as-
sumption (Section 2.2) and view the set of nodes  as samples of a
continuous manifold  embedded in an ambient space  , i.e.,  ⊂
 ⊂  .

Assumption 3.2 (The Kernel Imposes an RKHS Over ). Following
ection 2.3, once a kernel is defined, it imposes a unique RKHS. If
he graph adjacency matrix is constructed using a kernel function,
n underlying implicit RKHS is imposed over the vertex set  with
𝐾 ∶  ×  → R being its reproducing kernel (Section 2.3). We denote
this RKHS by 𝐾 .

Following Assumptions 3.1 and 3.2, we extend the kernel function
from the discrete set of nodes,  , to the continuous manifold of nodes,
, i.e., 𝐾 ∶  ×  → R. Since the graph was constructed with
4

Fig. 1. RoMix model illustration. The graph is illustrated by nodes and edges lying in
a manifold  that is embedded in the ambient space  . The blue sticks illustrate the
graph signal, which is a sampled version of a continuous function 𝑓 ∈ 𝐾 .

he kernel 𝐾, it imposes a unique space of continuous functions with
being their continuous domain. Therefore, as  are samples from

, we view a discrete graph-signal 𝑠 ∶  → R as 𝑛 samples from a
ontinuous function 𝑓 ∶  → R that lives in 𝐾 . Fig. 1 shows an
llustration for this model.

Furthermore, we can express each function 𝑓 ∈ 𝐾 by the eigenba-
is of the RKHS, {𝜙𝑚}∞𝑚=0 ∈ 𝐾 , as in (5). The graph-signal, being the
iscrete counterpart of 𝑓 , can therefore be expressed in the same form,
hile being evaluated on the nodes, namely:

(𝑣) =
∞
∑

𝑚=0
𝑐𝑚𝜙𝑚(𝑣), 𝑐𝑚 = ⟨𝑓, 𝜙𝑚⟩2

𝑝
, 𝑣 ∈  . (8)

The expansion in (8) implies we can evaluate 𝑓 (𝑥), the continuous
ounterpart of 𝑠, at any point on the manifold 𝑥 ∈ , given the kernel
igenfunctions 𝜙𝑚(𝑥) and the expansion coefficients 𝑐𝑚, facilitating both
nterpolation and extrapolation of the graph signal 𝑠.

In the remainder of this section, we show how we exploit the
xistence of closed-form expressions for {𝜙𝑚} when 𝐀 is generated by
he Gaussian kernel. Later, in Section 4, we present an algorithm that
inds the proper set of coefficients {𝑐𝑚}. We remark that even though
e hereafter focus on the Gaussian kernel, any symmetric positive semi-
efinite function can be employed as the kernel of the RKHS [27].
or instance, the sinc kernel, 𝐾(𝑥, 𝑦) = sinc(𝑥 − 𝑦), also has closed-
orm expressions for its associated eigenfunctions [51] under a uniform
istribution, and can thus be utilized instead of the Gaussian kernel
nder the same approach.

.1. The Gaussian Kernel and its associated eigenfunctions

To generate the adjacency matrix 𝐀 we use the popular Gaussian
ernel, i.e., for any 𝑣𝑖, 𝑣𝑗 ∈  , (1) takes the form:

𝑖,𝑗 = 𝐾(𝑣𝑖, 𝑣𝑗) = exp
(

−
‖𝑣𝑖 − 𝑣𝑗‖2

2𝜔2

)

, (9)

where 𝜔 ∈ (0,∞) is the Gaussian width and ‖ ⋅ ‖ is the norm in the
ambient space. Taking the broader view, this is just an evaluation of
the following kernel function 𝐾 ∶  × → R over two points in the

anifold,

(𝑥, 𝑦) = exp
(

−
‖𝑥 − 𝑦‖2

2𝜔2

)

, (10)

with 𝑥 = 𝑣𝑖 and 𝑦 = 𝑣𝑗 .
If the ambient space is  = R𝑑 and the data distribution 𝑃 (3)

follows a Gaussian distribution, the Gaussian kernel eigenfunctions that

Signal Processing 216 (2024) 109308I. Zach et al.

i

𝜆

(
w

Fig. 2. Top eigenvalues and eigenfunctions of the Gaussian kernel integral operator on  = R with 𝑝 =  (𝜇 = 5, 𝜎2 = 1). The Gaussian kernel width is set to 𝜔 = 0.3. (a) Top 20
eigenvalues (11). (b) Top 6 eigenfunctions (12).
W
i
k
s
d

e
b
i
t
t

3
a

a

span the associated RKHS have closed-form expressions [52,53]. We
describe them here for completeness.

First, let us consider the one-dimensional case of  = R with
𝑝 =  (𝜇, 𝜎2) being a Gaussian density with mean 𝜇 ∈ R and variance
𝜎2 > 0. In this setting, the eigenvalues {𝜆𝑚}∞𝑚=0 and eigenfunctions
{𝜙𝑚}∞𝑚=0 are given by:

𝜆𝑚 =

√

2

(1 + 𝛽 +
√

1 + 2𝛽)1∕2

(

𝛽

(1 + 𝛽 +
√

1 + 2𝛽)

)𝑚
, (11)

𝜙𝑚(𝑥) =
(1 + 2𝛽)1∕8
√

2𝑚𝑚!
exp

(

−
(𝑥 − 𝜇)2

2𝜎2

√

1 + 2𝛽 − 1
2

)

×𝐻𝑚

(

(1 + 2𝛽
4

)1∕4 𝑥 − 𝜇
𝜎

)

,

(12)

where 𝛽 = 2𝜎2∕𝜔2 and 𝐻𝑚(𝑥) is the 𝑚th Hermite polynomial. For
illustration, a few of the top eigenvalues and eigenfunctions are shown
in Fig. 2.

Now we turn to the extension of (11) and (12) to the 𝑑-dimensional
case, i.e,  = R𝑑 . Let 𝑝 be a multivariate Gaussian,  (𝝁,𝜮) with mean
vector 𝝁 ∈ R𝑑 and covariance matrix 𝜮 ∈ R𝑑×𝑑 . Let ∑𝑑

𝑖=1 𝜎
2
𝑖 𝒖𝑖𝒖

𝑇
𝑖 be the

eigen-decomposition of 𝜮. The eigenvalues and eigenfunctions of the
Gaussian kernel in R𝑑 are given by a product of 𝑑 univariate elements,
where each element is due to the density  (𝜇𝑖, 𝜎2𝑖) with 𝜇𝑖 = ⟨𝝁, 𝒖𝑖⟩R𝑑 ,
.e.:

𝑚 = 𝜆[𝑚1 ,…,𝑚𝑑] =
𝑑
∏

𝑖=1
𝜆𝑚𝑖 , (13)

𝜙𝑚(𝒙) = 𝜙[𝑚1 ,…,𝑚𝑑](𝒙) =
𝑑
∏

𝑖=1
𝜙𝑚𝑖 (⟨𝒙, 𝒖𝑖⟩R𝑑), (14)

where [𝑚1,… , 𝑚𝑑] is a multi-index vector with 𝑚𝑖 = 0, 1, 2,… over
all components. The multi-index vectors are sorted according to the
magnitude of the eigenvalues (13). For simplicity, we use a uni-index
𝑚 = 0, 1, 2,… for the sorted multi-index vectors.

It is possible to further extend the closed-form expressions to the
setting of 𝑘 Gaussian mixture components, i.e., 𝑝 =

∑𝑘
𝑖=1 𝜋𝑖 (𝝁𝑖,𝜮𝑖)

with some {𝜋𝑖}𝑘𝑖=1 ∈ (0, 1) such that ∑𝑘
𝑖=1 𝜋𝑖 = 1. As in [53], we

propose to utilize the closed-form expressions of (13), (14) and perform
a superposition of 𝑘 individual multivariate components, assuming the
components are well separated. See [53] for more details.

3.2. Manifold of a Gaussian mixture

In order to utilize the closed-form expressions in (13), (14), 𝑃 in
3) must follow a Gaussian mixture. Since this is not the general case,
5

e propose two approaches.
Approach 3.1 (Approximate 𝑃 as GMM in Ambient Space). When the
manifold allows, we approximate 𝑃 directly in the ambient space as
a Gaussian mixture. We follow several prior works [54–56] that utilize
this approximation using variants of a GMM.

Approach 3.2 (Approximate 𝑃 as GMM in Latent Space). When the
approximation in the ambient space with a GMM is poor, we propose to
embed the manifold to a latent space . The embedding is performed
such that the probability measure in the embedded space, 𝑃, can be
well approximated using a GMM. One such embedding algorithm is
Variational Autoencoder (VAE) [57] in which the latent space distri-
bution follows a GMM by construction. This distribution allows us to
exploit the closed-form expressions in the latent space.

As in various other works in the GSP domain which employ a kernel-
based method for interpolation and extrapolation, (e.g., [22–24,31,
34,36,37]), the underlying geometric structure of the data, i.e., the
structural information, is captured by the kernel. In the proposed
method, the eigenfunctions of the kernel play the same role and capture
this geometry. In either Approach 3.1 or Approach 3.2, the GMM
parameters (i.e., the means, the covariance matrices, and the compo-
nent proportions) are estimated from the nodal information using the
Expectation Maximization (EM) algorithm [41]. Then, the estimated
parameters are fed into the closed-form expressions of the eigenfunc-
tions (14). As the connectivity is captured by the kernel, it is also
captured by its eigenfunctions. This can be seen algebraically from
Mercer’s theorem [58]:

𝐾(𝑥, 𝑦) =
∞
∑

𝑚=0
𝜆𝑚𝜙𝑚(𝑥)𝜙𝑚(𝑦).

e further emphasize that the kernel operator 𝐿𝐾 in (4) and therefore
ts eigenbasis depend on the distribution parameters, and for the same
ernel function 𝐾, different sets of eigenbasis will result from different
ets of estimated parameters. An extensive analysis of the effect of the
ata density on kernel methods is done in [59].

By applying either of the two approaches, we obtain closed-form
xpressions for the eigenfunctions at any point on the manifold. Com-
ining it with the expansion in (8) allows us to present graph signal
nterpolation and extrapolation in the following Section 4. For illustra-
ion, we conclude this section with two examples demonstrating the
wo approaches.

.2.1. Example for Approach 3.1: Modeling the swiss roll with a GMM in
mbient space

We present a simple illustration of a case where the manifold allows
pproximating 𝑃 in the ambient space as a Gaussian mixture. The

3
Swiss roll is a 2D manifold, , embedded in  = R .

Signal Processing 216 (2024) 109308I. Zach et al.
Fig. 3. Manifold of Gaussian mixture example: Swiss roll in ambient space. (a) 𝑛 = 1000 points sampled from the Swiss roll dataset. (b) GMM parameters visualization. Blue
hollow circles: original 𝑛 = 1000 samples. Colored filled circles: contours of the covariance matrices corresponding to 1.5 standard deviations. Black arrows: 3 eigenvectors of each
component, centered around the corresponding component mean.
Fig. 4. Manifold of Gaussian mixture example: MNIST in latent space. (a) 50 random samples from the MNIST dataset. (b) GMM mean vectors in latent space after applying VAE
decoding. (c) 50 random draws from obtained GMM in latent space after VAE decoding.
The Swiss roll is parameterized by (𝜃, 𝑡), with ℎ being a constant,
such that:

(𝑥1, 𝑥2, 𝑥3) = (𝜃 cos 𝜃, 𝜃 sin 𝜃, ℎ𝑡). (15)

We generate 𝑛 = 1000 samples of (𝜃, 𝑡) pairs such that 𝜃 is sampled
uniformly on the arclength of a spiral, and 𝑡 is sampled uniformly in
[0, 1]. We set ℎ = 20. We then estimate a GMM using the Expectation
Maximization (EM) algorithm [41] with 𝑘 = 20 components. We plot
the original dataset and the retrieved parameters in Fig. 3.

3.2.2. Example for Approach 3.2: Modeling MNIST with a GMM in a latent
space

We now present an illustration for the case where we embed data
into a latent space, , and estimate a GMM in the latent space. We
train a VAE on the MNIST dataset [60] with a latent space dimension
of 𝑑 = 20. Fig. 4(a) shows 50 samples from the MNIST dataset.
Once the VAE training is done, we randomly sample 𝑛 = 24,000
images from MNIST and apply the trained VAE encoder to retrieve the
corresponding representations in the latent space. Then, we estimate
a GMM on the retrieved representations with 𝑘 = 10 components. To
visualize the GMM fit on the data in the latent space, we present the
10 mean vectors, one for each component, after applying the trained
VAE decoder for visualization in Fig. 4(b). We observe that the obtained
means assume the shapes of the digits. This implies that the GMM in the
latent space retrieved reasonable parameters. After obtaining the GMM
parameters, we generate 50 new points from the estimated GMM and
run them through the decoder to visualize the results. Fig. 4(c) shows
the generated images, which indeed resemble images from MNIST.

4. Graph-signals interpolation and extrapolation using RoMix

In this section, we present an algorithm for graph signal interpola-
tion and extrapolation based on our model RoMix (Section 3). Consider
a graph-signal 𝑠𝓁 , whose values are known only on a subset of 𝓁 labeled
nodes  ⊂  ,𝓁 < 𝑛. The task of graph-signal interpolation is to
6

𝓁

determine the graph-signal values on the remaining 𝑛−𝓁 nodes, denoted
𝑐𝓁 , based on 𝑠𝓁 , while the task of graph-signal extrapolation is to
determine the values on any unseen node added to the graph, which
was not in the original set  .

To interpolate 𝑠𝓁 ∶ 𝓁 → R to 𝑠 ∶  → R and extrapolate 𝑠 ∶  → R
to 𝑓 ∶  → R, we model 𝑓 as a function in the RKHS as in (5)
and require the following: First, we require consistency by minimizing
the mean squared error between 𝑓 (𝑣𝑖) and 𝑠𝓁(𝑣𝑖). Second, we impose
regularity by penalizing the RKHS norm (7) of 𝑓 over the manifold,
with some parameter 𝛾 > 0. Penalizing high norm values imposes a
‘‘smoother’’ function in the RKHS over its domain (see Section 2.3).

The two requirements lead to the following optimization problem:

𝑓 = arg min
𝑓∈𝐾

𝓁
∑

𝑖=1

(

𝑓 (𝑣𝑖) − 𝑠𝓁(𝑣𝑖)
)2 + 𝛾‖𝑓‖2𝐾

. (16)

4.1. From infinite to finite set of coefficients

Finding 𝑓 ∈ 𝐾 is equivalent to finding the (possibly infinite num-
ber of) representation coefficients {𝑐𝑚} in the expansion (5). However,
finding infinitely many coefficients is unnecessary. By penalizing high
norm values in (16), the higher order eigenfunctions are de-emphasized
in the expansion (Section 2.3). Therefore, rather than taking infinitely
many terms, we approximate 𝑓 by the 𝑀 principal eigenfunctions
corresponding to the largest 𝑀 eigenvalues of the kernel operator, i.e.:

𝑓 (𝑥) =
∞
∑

𝑚=0
𝑐𝑚𝜙𝑚(𝑥) ≈ 𝑓𝑀 (𝑥) =

𝑀−1
∑

𝑚=0
𝑐𝑚𝜙𝑚(𝑥). (17)

The selection of 𝑀 can be performed via cross-validation. This
restriction to an 𝑀 dimensional subspace can be interpreted in several
ways. First, from the GSP perspective, it is possible to relate the
eigenvalues of the graph adjacency matrix to the notion of frequen-
cies [46]. This notion remains valid while extending the set  to the
entire manifold ; as the index 𝑚 increases, the eigenfunctions of the

Signal Processing 216 (2024) 109308I. Zach et al.

w
𝜆

p

l
l
L
t
t

[
R
(

𝒄

w

𝒄

N
T

4

o

4

n
a
d
e
T
A
r
𝜔
a

𝜀

A

𝜀

W
o
a
s
t

P


i

kernel operator become less ‘‘smooth’’ over the manifold. Therefore,
from a frequency-domain perspective, setting the coefficients 𝑐𝑚 for
𝑚 ≥ 𝑀 to zero can be considered as low-pass filtering that imposes
a smooth function over the manifold. Another interpretation is that
by restricting the eigen-expansion to depend only on a small subset
of eigenfunctions, we follow Occam’s Razor principle, roughly stating
that ‘‘the simplest solution is most likely the right one’’. In fact, by
restricting the expansion only to depend on the top 𝑀 eigenfunctions,
we look for a simpler solution that does not scale up with the number
of data points, and we solve the problem in a well-posed fashion.
Following (17), the RKHS norm (7) can also be approximated using
the first 𝑀 terms:

‖𝑓‖2𝐾
=

∞
∑

𝑚=0

𝑐2𝑚
𝜆𝑚

≈
𝑀−1
∑

𝑚=0

𝑐2𝑚
𝜆𝑚

= 𝒄𝑇𝜦−1
𝑀 𝒄, (18)

here 𝒄𝑚 = 𝑐𝑚 and 𝜦𝑀 ∈ R𝑀×𝑀 is a diagonal matrix with (𝜦𝑀)𝑚,𝑚 =
𝑚.

In Section 3.2, we proposed two approaches. In the first (Ap-
roach 3.1), we approximate 𝑃 with a GMM in the ambient space
= R𝑑 . In the second (Approach 3.2), we embed the manifold in a

atent space  = R𝑑 and then approximate 𝑃 with a GMM in the
atent space. Either way, we consider the embedding of the nodes in R𝑑 .
et the vector 𝒗𝑖 ∈ R𝑑 represent the embedding of node 𝑣𝑖. We define
he nodes embedding coordinates matrix 𝐕𝓁 = [𝒗1,… , 𝒗𝓁]𝑇 ∈ R𝓁×𝑑 ,
he graph signal represented by a vector 𝒔𝓁 = [𝑠(𝒗1),… , 𝑠(𝒗𝓁)]𝑇 ∈
R𝓁 , and the eigenfunctions matrix evaluated at 𝐕𝓁 by 𝜱𝑀 (𝐕𝓁) =
𝝓0(𝐕𝓁),… ,𝝓𝑀−1(𝐕𝓁)] ∈ R𝓁×𝑀 with 𝝓𝑚(𝐕𝓁) = [𝜙𝑚(𝒗1),… , 𝜙𝑚(𝒗𝓁)]𝑇 ∈
𝓁 following (14) for 𝑚 ∈ {0,… ,𝑀−1}. Substituting (17) and (18) into

16) leads to the following finite dimensional optimization problem:

= arg min
𝒄̃∈R𝑀

‖𝜱𝑀 𝒄̃ − 𝒔𝓁‖2R𝑀 + 𝛾 𝒄̃𝑇𝜦−1
𝑀 𝒄̃, (19)

hose solution is given by

=
(

𝜱𝑇
𝑀𝜱𝑀 + 𝛾𝜦−1

𝑀

)−1
𝜱𝑇
𝑀𝒔𝓁 . (20)

ote that {𝜆𝑚}𝑀−1
𝑚=0 are strictly positive and bounded away from zero.

herefore the diagonal matrix 𝜦𝑀 is invertible.

.2. The proposed interpolation and extrapolation algorithm

Following the above, we now present the interpolation and extrap-
lation algorithm using RoMix in Algorithm 1.

.3. Parameters selection

Algorithm 1 has four parameters: 𝑘, the number of GMM compo-
ents, 𝜔, the Gaussian kernel width, 𝑀 , the number of eigenfunctions,
nd 𝛾, the RKHS norm penalty term. The four parameters can be
etermined by cross-validation, as they are application-specific. How-
ver, there exist methods to select some of the parameters analytically.
he number of GMM components can be selected by minimizing the
kaike information criterion (AIC) or the Bayesian information crite-
ion (BIC) [41]. The selection of the Gaussian kernel width parameter,
, is greatly studied in the literature. For instance, in [61], it is selected
ccording to 𝜀 = 2𝜔2, which is determined by the expression

= 1
𝑛

𝑛
∑

𝑖=1
min

𝑗∶𝒗𝑖≠𝒗𝑗
‖𝒗𝑖 − 𝒗𝑗‖2R𝑑 . (21)

nother approach is using

= max
𝑖=1,…,𝑛

min
𝑗∶𝒗𝑖≠𝒗𝑗

‖𝒗𝑖 − 𝒗𝑗‖2R𝑑 . (22)

ith regards to the number of eigenfunctions 𝑀 , we note that [9]
btains the number of eigenvectors of the graph Laplacian in an an-
lytical procedure. In order to obtain a similar analytical procedure for
electing 𝑀 in our context, further work is required, which is beyond
7

he scope of this paper. 𝑇
Algorithm 1 Interpolation and Extrapolation Using RoMix
Parameters:

𝑘 : Number of GMM components.
𝑀 : Number of eigenfunctions.
𝜔 : Gaussian kernel width.
𝛾 : RKHS norm penalty term.

Input:
𝐕 ∈ R𝑛×𝑑 : Given nodes embedding matrix.
𝒔𝓁 ∈ R𝓁 : Graph signal on 𝓁 ⊂  .

Output:
𝑓𝑀 ∶  → R : The interpolating and extrapolating function.

rocedure:
1: Model the data distribution 𝑃 (or 𝑃) supported by the manifold

 ⊂  (or ) as a GMM (using the Expectation Maximization
algorithm [41]) given the nodes coordinates matrix 𝐕:

[{𝝁𝑖}𝑘𝑖=1, {𝜮𝑖}𝑘𝑖=1,𝝅] = GMM(𝐕, 𝑘)

where 𝝁𝑖 ∈ R𝑑 ,𝜮𝑖 ∈ R𝑑×𝑑 ,𝝅 ∈ R𝑘 are the means vectors,
the covariance matrices and the proportions of the components,
respectively.

2: With the GMM outputs [𝝁,𝜮,𝝅], calculate the matrix 𝚽𝑀 contain-
ing the first 𝑀 analytic eigenfunctions (14) of the kernel operator
(4) at the nodes 𝐕𝓁 :

𝚽𝑀 (𝐕𝓁) =
⎡

⎢

⎢

⎣

| |

𝝓0(𝐕𝓁) ⋯ 𝝓𝑀−1(𝐕𝓁)
| |

⎤

⎥

⎥

⎦

∈ R𝓁×𝑀

3: Find 𝒄 using eq. (20).
4: For every missing graph signal value at node 𝑥 ∈  and for any

new node 𝑥 ∈ :

𝑓𝑀 (𝑥) =
𝑀−1
∑

𝑚=0
𝑐𝑚𝜙𝑚(𝑥)

4.4. Computational complexity analysis

We now turn to analyze the computational complexity of Algo-
rithm 1. In the case of Approach 3.1, there is no need to perform
a pre-processing embedding step of the 𝑛 points. In the case of Ap-
proach 3.2 we apply a pre-processing step and embed the 𝑛 points
into a latent space before running Algorithm 1. Since this optional pre-
processing step depends on the application at hand, its computational
complexity varies. For instance, we analyze a simple implementation
of VAE as the pre-processing step for the case of images of size 𝑑 × 𝑑
in Appendix B. In that case, the computational complexity of training
a VAE before applying Algorithm 1 can be bounded by (𝑡𝑏𝑑2) where
𝑡 is the number of training epochs and 𝑏 is the batch size. We note that
in some cases a pre-trained VAE might exist or can be easily obtained
by fine-tuning an already-trained VAE from a similar domain. Hence,
the computational complexity of training a VAE might be avoided.

In the first step of Algorithm 1, we compute the GMM parameters
using the EM algorithm [41]. In each iteration, the E step costs (𝑛𝑘𝑑+
𝑛𝑘) and the M step costs (𝑛𝑘𝑑) (see, e.g., [62]). In the typical case
where the number of EM iterations is much smaller than the order of 𝑛,
we have a total computational complexity (𝑛𝑘𝑑). In the second step,
we evaluate the 𝑀 eigenfunctions at the 𝓁 nodes and therefore this
step has a computational complexity of (𝑀𝓁). In the third step, we
compute the coefficients (20) and invert an 𝑀 × 𝑀 matrix which is
generally (𝑀3). In the last step we compute the 𝑀 eigenfunctions in
(𝑀). Summing all steps results in the computational complexity for

nterpolation:
3 3
= (𝑛𝑘𝑑 +𝑀𝓁 +𝑀 +𝑀) = (𝑛𝑘𝑑 +𝑀𝓁 +𝑀).

Signal Processing 216 (2024) 109308I. Zach et al.

i

T
F

𝑇

T
o
c

𝑇

5

r
b
o
𝓁
g
e
a
t
r
t
i

i
A
e
t
a
d

A

w
n

Fig. 5. Toy example 1: Laplacian eigenfunctions interpolation and extrapolation results with a uniform sample of the 1D grid. (a) Accuracy (23). (b) Eigenfunctions 𝑞 ∈ {0, 1, 2, 3, 𝑄−1}
nterpolation. (c) Eigenfunctions 𝑞 ∈ {0, 1, 2, 3, 𝑄 − 1} extrapolation.
s

5

e

a
m
𝑞

a
L
r
T
c
f
g
t
i
w
t
A

ypically, the number of GMM components is selected such that 𝑘 ≪ 𝑛.
or the case of 𝑑 ≪ 𝑛, we have

= (𝑛 +𝑀𝓁 +𝑀3).

he last step in Algorithm 1 is used both for interpolation and extrap-
lation and its computational complexity is (𝑀). Therefore, the total
omputational complexity is

= (𝑛 +𝑀𝓁 +𝑀3).

. Experimental results

In this section, we showcase the performance of the RoMix algo-
ithm (Algorithm 1) in several experiments and compare it to other
aseline algorithms. In each experiment, we are given a vertex set
f 𝑛 nodes,  , and a graph-signal 𝒔𝓁 ∈ R𝓁 with given values over
< 𝑛 nodes. We attempt to interpolate from 𝒔𝓁 to the ground-truth

raph-signal, 𝒔 ∈ R𝑛, which is defined over the set  , and further
xtrapolate to 𝒔̃ ∈ R𝑁 , the ground-truth graph-signal defined over
n extended set of 𝑁 > 𝑛 nodes. The set of 𝑁 − 𝑛 nodes, alongside
heir nodal information, edge weights, and graph signal values are not
evealed to any of the algorithms and are used only for evaluation of
he extrapolation accuracy. The origin of the ground-truth graph signals
s described in each of the following experiments.

Each experiment is composed of 𝑅 Monte-Carlo iterations. In each
teration 𝑟 ∈ {1,… , 𝑅}, we are given a different set 𝓁 from which
lgorithm 1 and the competing algorithms attempt to interpolate and
xtrapolate. In each iteration 𝑟 and for each algorithm 𝐚𝐥𝐠𝐨, we measure
he accuracy between the ground truth graph-signal 𝒔 and the specific
lgorithm resultant graph-signal, 𝒔𝐚𝐥𝐠𝐨𝑟 . The accuracy metric is then
efined by:

cc(𝒔algo, 𝒔) = 100

(

1 − 1
𝑅

𝑅
∑

𝑟=1

‖

‖

‖

𝒔algo
𝑟 − 𝒔‖‖

‖

‖

‖

‖

𝒔‖‖
‖

)

, (23)

here the norm ‖ ⋅ ‖ in (23) is the Euclidean norm (R𝑛 or R𝑁 , as
8

eeded). u
We refer to the published code [63] to reproduce the results pre-
ented in this section.

.1. Toy examples: Laplacian eigenfunctions

In this section, we utilize Algorithm 1 in order to approximate the
igenvectors of the normalized Laplacian (2) in  = R𝑑 on the 𝑑-

dimensional hyperrectangle being the manifold  = [0, 𝐿1] × ⋯ ×
[0, 𝐿𝑑]. In this case, the eigenfunctions and eigenvalues of the contin-
uous Laplace–Beltrami operator on the manifold  have closed-form
expressions of the form [64]:

𝜆𝑞 = 𝜆[𝑞1 ,…,𝑞𝑑] =
𝑑
∑

𝑖=1

(

𝑞𝑖𝜋
𝐿𝑖

)2
, (24)

𝜓𝑞(𝒙) = 𝜓[𝑞1 ,…,𝑞𝑑](𝑥1,… , 𝑥𝑑) =
𝑑
∏

𝑖=1
cos

(

𝑞𝑖𝜋𝑥𝑖
𝐿𝑖

)

, (25)

where [𝑞1,… , 𝑞𝑑] is a multi-index vector with 𝑞𝑖 = 0, 1, 2,… over
ll components. The multi-index vectors are sorted according to the
agnitude of the eigenvalues (24). For simplicity, we use a uni-index
= 0, 1, 2,… for the sorted multi-index vectors.

When the normalized graph Laplacian (2) is constructed using an
djacency matrix generated from the Gaussian kernel (10), the graph
aplacian eigenvectors and eigenvalues converge to (24) and (25),
espectively, as 𝑛⟶ ∞ and 𝜔⟶ 0 (e.g. [40] and reference therein).
his allows us to verify our algorithm in a controlled fashion by
omparing the resulting estimations of Algorithm 1 with the closed-
orm expressions in (25). We note that the general task of learning the
raph Laplacian from data is covered in the literature (e.g. [12,13]). In
he general case, the entire graph structure, i.e., the graph Laplacian or
ts eigendecomposition, is learned from data. However, in our context,
e recast a particular case of graph Laplacian eigenvectors estima-

ion as graph signal interpolation and extrapolation tasks to validate
lgorithm 1 results against ground-truth expressions.

In each example, we run the following 𝑅 = 10 Monte-Carlo trials: we
niformly sample 𝑛 points from , which form the set  , and randomly

Signal Processing 216 (2024) 109308I. Zach et al.
Fig. 6. Toy example 2: Laplacian eigenfunctions interpolation and extrapolation results with a uniform sample of the 2D grid. (a) Accuracy (23). (b) Eigenfunctions 𝑞 ∈ {1, 7, 13, 𝑄−1}
interpolation. (c) Eigenfunctions 𝑞 ∈ {1, 7, 13, 𝑄 − 1} extrapolation.
sample 𝓁 < 𝑛 points from  which form the set 𝓁 . We then evaluate
the top 𝑄 Laplacian eigenfunctions of the Laplacian, in 𝓁 , using (25)
as the graph signals we wish to interpolate and extrapolate.

For 𝑞 ∈ {0,… , 𝑄 − 1}, we denote the 𝑞th ground-truth interpo-
lated graph-signal (eigenfunction) by 𝝍𝑞 ∈ R𝑛 and the ground-truth
extrapolated graph-signal (eigenfunction) by 𝝍̃𝑞 ∈ R𝑁 .

The parameters for Algorithm 1 in each example are presented in
Table 1. We remark that in all simulations, we chose the number of
Gaussian kernel eigenfunctions,𝑀 , in Algorithm 1 to be𝑀 > 𝑄. In fact,
if 𝑄 increases up to 𝑛, it is always possible to respectively increase 𝑀
due to the infinite number of the Gaussian kernel eigenfunctions, which
have closed-form expressions.

5.1.1. Example 1: Uniform samples over a 1D grid
In this example we set  = R and  = [0, 𝐿] where 𝐿 = 1. The

number of points is set to 𝓁 = 500, 𝑛 = 1000 and 𝑁 = 3000, i.e., we
have 𝑛 − 𝓁 = 500 missing values, and 𝑁 − 𝑛 = 2000 newly introduced
nodes for the extrapolation. In this case, the eigenfunctions in (25) have
the form:

𝜓𝑞(𝑥) = cos(𝑞𝜋𝑥). (26)

We present the interpolation and extrapolation for eigenfunctions
𝑞 ∈ {0, 1, 2, 3, 𝑄− 1} of the normalized Laplacian in Figs. 5(b) and 5(c),
respectively. In Fig. 5(a) we present the accuracy (23) results. Note that
the obtained accuracy always exceeds 99.7±0.05% for all 𝑞 = 0,… , 𝑄−1.
9

5.1.2. Example 2: Uniform samples over a 2D grid
In this example, we set  = R2 and  = [0, 𝐿1] × [0, 𝐿2]. The

values for 𝐿1 and 𝐿2 are chosen such that  is later transformed to
a Swiss roll (see (15)) in the following Example 3. Therefore, we select
𝐿1 = 𝑆(4𝜋) ≈ 80 where 𝑆(𝜃) is the arclength given in the following
Eq. (28) and 𝐿2 = 20. The number of points is set to 𝓁 = 1500,
𝑛 = 2000 and 𝑁 = 5000, i.e., we have 𝑛 − 𝓁 = 500 missing values,
and 𝑁 − 𝑛 = 3000 newly introduced nodes for extrapolation. In this
case, the eigenfunctions in (25) are given by:

𝜓𝑞(𝒙) = 𝜓[𝑞1 ,𝑞2](𝑥1, 𝑥2) = cos
(

𝑞1𝜋𝑥1
𝐿1

)

cos
(

𝑞2𝜋𝑥2
𝐿2

)

. (27)

Similarly to Example 1, we present the results in Fig. 6, demonstrating
the high accuracy obtained by our algorithm in the two-dimensional
case as well.

5.1.3. Example 3: Uniform samples over a Swiss roll
In this example, we demonstrate our algorithm on the Swiss roll

(see (15)). Same as in Example 2, we have two uniformly distributed
random variables, (𝑡, 𝜃), where 𝜃 ∈ [0, 4𝜋] is uniformly sampled along
the arclength 𝑆(𝜃) ∈ [0, 𝐿1] and 𝑡 is uniformly sampled in [0, 𝐿2]. The
arclength is given by

𝑆(𝜃) = 1
(

𝜃
√

1 + 𝜃2 + log
(

𝜃 +
√

1 + 𝜃2
)

)

. (28)

2

Signal Processing 216 (2024) 109308I. Zach et al.
Fig. 7. Toy example 3: Laplacian eigenfunctions interpolation and extrapolation results with a uniform sample of the 3D Swiss roll. (a) Accuracy (23). (b) Eigenfunctions
𝑞 ∈ {1, 7, 13, 𝑄 − 1} interpolation. (c) Eigenfunctions 𝑞 ∈ {1, 7, 13, 𝑄 − 1} extrapolation.
Table 1
Toy examples Algorithm 1 parameters.

Parameter 1D Uniform 2D Uniform 3D Swiss roll

𝜔, Kernel width 2
√

𝐿∕𝑛
√

5∕2
√

5∕2
𝑘, # GMM comp. 1 20 20
𝑀 , # eigs. 50 50 50
𝛾, ‖ ⋅ ‖𝐾

penalty 1𝑒−5 1𝑒−5 1𝑒−5

We present the results in Fig. 7 and observe similar trends as in Example
2. We note that we use the same number of points 𝑛,𝓁, 𝑁 and the same
parameters in Algorithm 1 as in Example 2.
10
5.2. Toy example: Two-Moons semi-supervised classification

In this section, we utilize Algorithm 1 for a semi-supervised classifi-
cation task of the Two-Moons dataset. The Two-Moons dataset is a 2D
manifold embedded in R2 denoted by . The parameterization of the
upper and lower moons is given, respectively, by

𝒙 = (𝑥1, 𝑥2) = (cos(𝜋𝑡), sin(𝜋𝑡)) + 𝜼𝟏,

𝒙 = (𝑥1, 𝑥2) = (1 − cos(𝜋𝑡), − sin(𝜋𝑡)) + 𝜼𝟐,
(29)

where 𝑡 is a parameter in the range [0, 1] and 𝜼𝒊 are i.i.d according to
 (𝟎, 𝜎2𝜂𝑰). We generate 𝑛 = 200 samples from (29), divided equally
between the two moons and present them in Fig. 8(a). We then run the
first step of Algorithm 1, i.e., the GMM approximation step, with 𝑘 = 8
components and present the result in Fig. 8(b).

Signal Processing 216 (2024) 109308I. Zach et al.

o
t
W
o
g
a

5

d
s

5

R
f

Fig. 8. Two-Moons manifold of Gaussian mixture. (a) 𝑛 = 200 points of the Two Moons dataset (29). (b) GMM probability density function contour lines with 𝑘 = 8 components.
Blue circles: original 𝑛 = 200 points. Red dots: mean vectors. Colored circles: contours of the probability density function. 𝝅 denotes the proportions of each component in the
GMM.
v
p

o
r
u
u

P
f
I
a
s
o
s

𝒔

w
𝐋

w

The semi-supervised classification task aims to classify a set of 𝑛
points given a small subset of 𝓁 ≪ 𝑛 labeled points. In this Two-Moons
dataset, there are two labels; all points in the upper moon are given
the label 𝑦 = +1, and all points in the lower moon are given the
label 𝑦 = −1. This classification task can be recast as a graph signal
interpolation problem by defining the set of 𝑛 points as the vertex set 
with 𝒗𝒊 = 𝒙𝒊 and the set of labeled points as the set 𝓁 . The graph signal
can then be used as a classifier between the two classes by taking its
sign, i.e., 𝑦𝑖 = sign

(

𝑠(𝒗𝑖)
)

. Points not part of the original dataset should
also be classified correctly. This classification can be recast as a graph
signal extrapolation problem.

A common regularizer applied to various GSP tasks is the manifold
regularization [38], given by 𝒔𝑇𝐋𝒔 = 𝒄𝑇𝜱𝑇

𝑀𝐋𝜱𝑀𝒄. We apply this
regularizer to (19) which yields

𝒄 = arg min
𝒄̃∈R𝑀

‖𝜱𝑀 𝒄̃ − 𝒔𝓁‖2R𝑀 + 𝛾𝐴𝒄̃𝑇𝜦−1
𝑀 𝒄̃ + 𝛾𝐼 𝒄̃

𝑇𝜱𝑇
𝑀𝐋𝜱𝑀 𝒄̃, (30)

where 𝛾𝐴 is the ambient penalty term and 𝛾𝐼 is the intrinsic penalty
term. A discussion on these penalty terms can be found in [38]. The
solution for (30) is given by

𝒄 =
(

𝜱𝑇
𝑀𝜱𝑀 + 𝛾𝐴𝜦−1

𝑀 + 𝛾𝐼𝜱𝑇
𝑀𝐋𝜱𝑀

)−1
𝜱𝑇
𝑀𝒔𝓁 . (31)

We note that adding the additional manifold regularization term does
not affect the computational complexity of Algorithm 1 as the matrix
to be inverted is still 𝑀 ×𝑀 .

In this example, we run the following 𝑅 = 10 Monte-Carlo trials: we
randomly sample 𝑛 = 200 points from  given by (29) with 𝜎𝜂 = 0.1,
which forms the set  . We randomly sample only 𝓁 = 2 points from  ,
ne from each class, which forms the set 𝓁 . Furthermore, we sample a
est set of 𝑁−𝑛 = 200 points to evaluate the extrapolation performance.

e show the resultant graph signal in Fig. 9(a) as a continuous function
ver , and the classifier with its decision boundary in Fig. 9(b). We
et 100% classification accuracy in all trials for both the interpolation
nd extrapolation results.

.3. Real world examples

In this section, we demonstrate Algorithm 1 on two real-world
atasets and compare the performance to four baseline methods de-
cribed in the following Section 5.3.1 and summarized in Table 2.

.3.1. Baseline methods
The first baseline method is the Representer Theorem (abbreviated

ep. Thm.) [29] applied in an RKHS. The representer theorem is used
11

or graph signal interpolation, for instance, in [22,23]. In this method, t
the interpolating and extrapolating functions are given, respectively, by

𝒔𝐑𝐞𝐩.𝐓𝐡𝐦. = 𝐊𝜶 = 𝐊(𝐉𝐊 + 𝛾𝐈)−1𝒔𝓁 , (32)

𝑠̃𝐑𝐞𝐩.𝐓𝐡𝐦.(𝑥) =
𝑛
∑

𝑖=1
𝛼𝑖𝐾(𝑣𝑖, 𝑥). (33)

where 𝒔̄𝓁 = [𝒔𝑇𝓁 , 𝟎
𝑇
𝑛−𝓁]

𝑇 , 𝐉 = diag(𝟏𝓁 , 𝟎𝑛−𝓁) with 𝟎𝑘 being a 𝑘-zeros
ector, 𝟏𝑘 being a 𝑘-ones vector, 𝐊𝑖,𝑗 = 𝐾(𝑣𝑖, 𝑣𝑗) and 𝛾 > 0 is some
enalty term. The computational complexity of the interpolation is
(𝑛3) due to the 𝑛 × 𝑛 matrix inversion. The computational complexity
f the extrapolation is (𝑛) due to the 𝑛 evaluations {𝐾(𝑣𝑖, 𝑥)}𝑛𝑖=1. We
emark that the representer theorem can be related to our expansion (8)
sing Mercer’s Theorem [58]. However, our expansion does not scale
p with the number of data points 𝑛.

The second baseline method is Variational Splines interpolation in
aley-Wiener space (abbreviated VSPW) [21]. We use the MATLAB
unction gsp_interpolate() provided in the toolbox GSPBox [65].
t implements an interpolation method based on Pesenson’s model [21]
nd described in [20]. In this method, the graph signal is assumed to be
mooth over the graph 𝐺 (i.e., it is a function in a Paley-Wiener space
f the graph 𝐺 with some frequency 𝜔), and the interpolating graph
ignal, referred to as a variational spline, is given by
𝐕𝐒𝐏𝐖 = 𝜱𝑛×𝓁𝜶 = 𝜱𝑛×𝓁𝜱−1

𝓁×𝓁𝒔𝓁 , (34)

here 𝜱𝑛×𝓁 ∈ R𝑛×𝓁 are Green’s functions of the regularized Laplacian,
̄ = 𝐋 + 𝜀𝐈 with some 𝜀 > 0, and 𝜱𝓁×𝓁 ∈ R𝓁×𝓁 contains only the
rows from𝜱𝑛×𝓁 which correspond to 𝓁 . The computational complexity
of the interpolation is (𝑛3) due to the inevitable eigendecomposition
of the normalized Laplacian while computing 𝜱𝑛×𝓁 . We remark that
this method does not support an extrapolation procedure and there-
fore needs to be run from scratch if a new node is added to the
graph. As an aside, rather than taking Green’s functions in (34), [9]
takes the regularized Laplacian eigenvectors associated with its lowest
eigenvalues.

The third baseline method is the Nyström method (abbreviated
Nys) [19], which is used, for instance, in [16]. The Nyström method al-
lows to numerically approximate the eigenfunctions of a kernel integral
operator (4) [67]. In particular, it allows to extrapolate the eigenvectors
of the 𝑛 × 𝑛 kernel matrix 𝐊𝑖,𝑗 = 𝐾(𝑣𝑖, 𝑣𝑗):

𝜙𝑚(𝑥) =
1
𝜆𝑚

𝑛
∑

𝑖=1
𝜙𝑚(𝑣𝑖)𝐾(𝑣𝑖, 𝑥). (35)

here {𝜆𝑚, 𝜙𝑚} are the eigenvalues and eigenvectors of 𝐊. Assuming

he graph signal can be approximated using the top 𝑀 eigenfunctions

Signal Processing 216 (2024) 109308I. Zach et al.
Fig. 9. Two-Moons RoMix continuous graph signal and classifier. Red diamond: first labeled point with label 𝑦 = +1. Green dot: second labeled point with label 𝑦 = −1. (a)
Colored surface: Two-Moons RoMix continuous graph signal, 𝑓𝑀 (𝑥1 , 𝑥2). Blue dots: graph signal values of the interpolated 𝑛 = 200 points. Purple diamonds: graph signal values of
the extrapolated 𝑁 − 𝑛 = 200 points. (b) Two-Moons RoMix decision boundary where 𝑓𝑀 (𝑥1 , 𝑥2) = 0. All points in the orange region will have the label 𝑦 = +1 and all points in
the white region will have the label 𝑦 = −1. Blue dots: 𝑛 = 200 given points. Purple diamonds: 𝑁 − 𝑛 = 200 extrapolation points.
Table 2
Baseline methods.

Method Description Comments

Representer
Theorem [29]

𝒔𝐑𝐞𝐩.𝐓𝐡𝐦. = 𝐊𝜶 = 𝐊(𝐉𝐊 + 𝛾𝐈)−1𝒔𝓁

𝑠̃𝐑𝐞𝐩.𝐓𝐡𝐦.(𝑥) =
𝑛
∑

𝑖=1
𝛼𝑖𝐾(𝑣𝑖 , 𝑥)

• Used in [22,23]
• 𝐊𝑖,𝑗 = 𝐾(𝑣𝑖 , 𝑣𝑗)
• 𝐉 = diag(𝟏𝓁 , 𝟎𝑛−𝓁)
• Interp. complexity: (𝑛3)
• Extrap. complexity: (𝑛)

Variational Splines
and Paley-Wiener
Spaces [21]

𝒔𝐕𝐒𝐏𝐖 = 𝜱𝑛×𝓁𝜶 = 𝜱𝑛×𝓁𝜱−1
𝓁×𝓁𝒔𝓁 • gsp_interpolate() from GSPBox [65]

• 𝐋̄ = 𝐋 + 𝜀𝐈
• 𝜱𝑛×𝓁 are Green’s functions of 𝐋̄ at 
• 𝜱𝓁×𝓁 are 𝜱𝑛×𝓁 at 𝓁

• Interp. complexity: 
(

𝑛3
)

Nyström method [19] 𝒔𝐍𝐲𝐬 = 𝜱𝑛×𝑀𝒄 = 𝜱𝑛×𝑀𝜱
†
𝓁×𝑀𝒔𝓁

𝑠̃𝐍𝐲𝐬(𝑥) =
𝑀
∑

𝑚=1
𝑐𝑚𝜙𝑚(𝑥)

=
𝑀
∑

𝑚=1

𝑐𝑚
𝜆𝑚

𝑛
∑

𝑖=1
𝜙𝑚(𝑣𝑖)𝐾(𝑣𝑖 , 𝑥)

• Used in [16]
• 𝐊 = 𝜱𝜦𝜱𝑇

• Interp. complexity: (𝑀2𝓁)
• Extrap. complexity: (𝑛𝑀)

Weighted k-nearest
neighbors [66]

For the vertex 𝑣:
1. [𝑢1 ,… , 𝑢𝑘 , 𝑑1 ,… , 𝑑𝑘] = 𝑘-NN(𝑣,𝓁)
2. ∀𝑖 ∈ {1,… , 𝑘} ∶
𝑎𝑖 = 1∕𝑑𝑖 , 𝑤𝑖 = 𝑎𝑖∕

∑𝑘
𝑗=1 𝑎𝑗

3. 𝑠𝐰−𝐤𝐍𝐍(𝑣) = ∑𝑘
𝑖=1 𝑤𝑖𝑠(𝑢𝑖)

• Interp. complexity: 
(

(𝑛 − 𝓁) log2(𝑛 − 𝓁)
)

of 𝐾, the interpolating and extrapolating functions using Nyström’s
method are given, respectively, by

𝒔𝐍𝐲𝐬 = 𝜱𝑛×𝑀𝒄 = 𝜱𝑛×𝑀𝜱
†
𝓁×𝑀𝒔𝓁 , (36)

𝑠̃𝐍𝐲𝐬(𝑥) =
𝑀
∑

𝑚=1
𝑐𝑚𝜙𝑚(𝑥) =

𝑀
∑

𝑚=1

𝑐𝑚
𝜆𝑚

𝑛
∑

𝑖=1
𝜙𝑚(𝑣𝑖)𝐾(𝑣𝑖, 𝑥), (37)

where 𝜱𝑛×𝑀 ∈ R𝑛×𝑀 are the top 𝑀 eigenvectors of 𝐊 at  , 𝜱𝓁×𝑀
is the eigenvectors matrix 𝜱𝑛×𝑀 at the given 𝓁 and † denotes the
pseudo-inverse. The computational complexity of the interpolation is
(𝑀2𝓁) due to the 𝓁 ×𝑀 matrix pseudo-inversion. The computational
complexity of the extrapolation is (𝑛𝑀) due to the 𝑀 evaluations of
{𝑐𝑚𝜙𝑚(𝑥)}𝑀𝑚=1 and 𝑛 evaluations according to (35).

The fourth baseline method is the weighted 𝑘 Nearest Neighbors
(abbreviated w-kNN) [66]. In this method, for a node 𝑣 (either for
interpolation, i.e., 𝑣 ∈ 𝑐𝓁 , or for extrapolation, i.e., 𝑣 ∈  ⧵ ) the
following steps are performed. (1) Search for the 𝑘 nearest neighbors in
terms of Euclidean distance. The 𝑘 closest neighboring vertices to 𝑣 are
denoted 𝑢1,… , 𝑢𝑘 with distances 𝑑1,… , 𝑑𝑘. (2) Calculate the 𝑘 weights
using the affinities defined by 𝑎 = 1∕𝑑 , having 𝑤 = 𝑎 ∕

∑𝑘 𝑎 . (3)
12

𝑖 𝑖 𝑖 𝑖 𝑗=1 𝑗
The interpolating graph signal is given by

𝑠𝐰−𝐤𝐍𝐍(𝑣) =
𝑘
∑

𝑖=1
𝑤𝑖𝑠(𝑢𝑖) (38)

The computational complexity of the interpolation is 
(

(𝑛− 𝓁) log2(𝑛−
𝓁)
)

due to the use of MATLAB’s knnsearch() which implements [68].
We remark that this method’s interpolation and extrapolation processes
are the same.

All four baseline methods utilize the graph structure, either through
its adjacency matrix or its Laplacian, in order to infer the missing graph
signal values. The Rep. Thm. method [29], the Nyström method [19],
and w-kNN [66] leverage the graph adjacency matrix, which captures
the connectivity of the nodes. The Rep. Thm. method and the Nyström
method use a kernel function to generate the adjacency matrix, while
w-kNN uses a 𝑘 nearest neighbors adjacency matrix. On the other hand,
VSPW [21] captures the graph structure using the graph Laplacian
obtained from its Green functions.

5.3.2. Handwritten digits classification
We examine the classification accuracy of handwritten digits from

the 28 × 28 = 784-dimensional MNIST dataset [60] using Algorithm 1
and the baseline methods (see Table 2). We present 50 random samples

Signal Processing 216 (2024) 109308I. Zach et al.

e
l
t
l
w
l
i
a
𝒔
i
i
R
H

s
d
T
i
m
i
i
i

Fig. 10. MNIST (with VAE): digits classification accuracy and run times results. (a) Interpolation accuracy (23) of each method (𝑛 images). (b) Extrapolation accuracy (23) of
each method (𝑁 images). (c) Interpolation time of each method.
T
w
w
w
p

5

G
g
s
m
D
a
t
b
t
s

a
g
D
i
g
t
t
0
W
t
s
s
𝑁
W
s
g
p
t
t

Table 3
MNIST: Algorithm 1 parameters.
Parameter Value

Kernel width 𝜔 = 2.28
GMM comp. 𝑘 = 10
eigs. 𝑀 = 1000
‖ ⋅ ‖𝐾

penalty 𝛾 = 0.1

from the dataset in Fig. 4(a). We begin by building the latent space, ,
in which we test all the algorithms. We train a VAE with a latent space
of dimension 𝑑 = 20 using the 60,000 training images from the dataset.
In each experiment, we select a varying number of labeled images 𝓁
from which all methods perform the interpolation/extrapolation. We
run 𝑅 = 5 Monte-Carlo iterations in each experiment. In each iteration,
we perform the following procedure. We randomly select a set of
𝑁 = 34,000 images and their corresponding labels {𝑦𝑖}𝑁𝑖=1 out of the
70,000 images of MNIST. From that set, we randomly select 𝑛 = 24,000
(𝑛 < 𝑁) images. We keep the remaining 𝑁 − 𝑛 = 10,000 labels to
valuate the extrapolation performance. We view the corresponding
atent representations denoted by {𝒗𝑖}𝑛𝑖=1 as the inputs of each of the
ested methods and construct the input matrix 𝐕 ∈ R𝑛×𝑑 . From the 𝑛
atent representations, we randomly select the labeled subset {𝒗𝑖}𝓁𝑖=1
ith the corresponding labels {𝑦𝑖}𝓁𝑖=1. We keep the remaining 𝑛 − 𝓁

abels to evaluate the interpolation performance. We then construct 10
ndicator vectors {𝒔𝑐𝓁}

9
𝑐=0 from the labels {𝑦𝑖}𝓁𝑖=1, one for each digit, that

ct as 10 graph signals. For the digit 𝑐 ∈ {0,… , 9}, 𝒔𝑐𝓁(𝑖) = 1 if 𝑦𝑖 = 𝑐 and
𝑐
𝓁(𝑖) = 0 if 𝑦𝑖 ≠ 𝑐. We present the parameters chosen for Algorithm 1
n Table 3. We show the obtained accuracy results and corresponding
nterpolation run times in Fig. 10. We can observe that our method,
oMix, achieves the best accuracy along with the Representer theorem.
owever, our approach requires much lower run times.

We now discuss the impact of applying the VAE pre-processing
tep. We conduct an ablation test where we run the same experiment
escribed previously in this section using the same parameters in
able 3, without the VAE pre-processing step. We present the results

n Fig. 11. We observe the following implications. The Rep. Thm.
ethod accuracy and computation complexity were not significantly

mpacted. The accuracy of the Nyström method was improved but
ts computational complexity degraded. The accuracy of w-kNN was
mproved, but the computation complexity was significantly impaired.
13

o

he VSPW method accuracy degraded, and its computation complexity
as not significantly impacted. The accuracy of our method, RoMix,
as not significantly impacted, while the computational complexity
as significantly reduced. This corroborates the benefit of the VAE
re-processing step for Algorithm 1 (RoMix).

.3.3. Bulgaria beacons
We now test our algorithm in an application to a sensor network.

iven a Digital Elevation Model (DEM) of a certain terrain in Bul-
aria [69], we wish to estimate a received Radio Frequency (RF)
ignal power in the entire terrain based on a small number of sensors
easuring the received signal power at their positions. We present the
EM in Fig. 12(a). The terrain size is one by one degree in longitude
nd latitude (approximately 110 [km] on each axis). The topography of
he terrain greatly affects the propagation of the RF signals. We begin
y generating the ground-truth graph signal as the measurements of
he sensor network by simulating the propagation using the commercial
oftware EDX® SignalPro® .

To this end, we place two transmitters (TX1 and TX2) on the DEM
t random locations (designated by blue diamonds in Fig. 12(a)), and
enerate measurements of their received powers on every point of the
EM. We follow the same configuration introduced in [70]. Specif-

cally, we use the Anderson-2D for the path-loss model and include
round reflections and Fresnel zones in the computation. We set the
ransmitters to be omnidirectional, hand-held, at 2 [m] height with a
ransmission frequency of 𝑓 = 150 [MHz]. The transmitters’ power is

[dBm], and the processing bandwidth is assumed to be 100 [Hz].
e assume the thermal noise density is −174 [dBm/Hz], such that

he noise floor is at −154 [dBm]. We present the simulated received
ignal power at each point of the DEM in Fig. 12(b). To avoid long
imulation times, we sample the DEM along each axis and form a grid of
= 100×100 nodes. The sampling intervals are approximately 1.1[km].
e then define 𝒔̃ ∈ R𝑁 , the ground-truth graph signal, by sampling the

imulated received signal power at the closest points on the sampled
rid. 𝒔̃ will be used to evaluate the extrapolation performance and is
resented in Fig. 12(c). From 𝒔̃ we randomly sample 𝑛 points and form
he ground-truth graph signal 𝒔 ∈ R𝑛 which will be used to evaluate
he interpolation performance. We present it in Fig. 12(d).

In order to construct a graph, we extract four features for each point

n the grid of 𝑁 nodes, having a latent space . The first feature is the

Signal Processing 216 (2024) 109308

14

I. Zach et al.

Fig. 11. MNIST (without VAE): digits classification accuracy and run times ablation test results. (a) Interpolation accuracy (23) of each method (𝑛 images). (b) Extrapolation
accuracy (23) of each method (𝑁 images). (c) Interpolation time of each method.

Fig. 12. Bulgaria beacons: DEM, received RF signal power simulated using EDX® SignalPro® and ground-truth graph signals. Blue diamonds: two transmitters. Green circles: 𝓁 = 25
sensors. (a) Bulgaria DEM. Black dots: grid of 𝑁 = 100 × 100 nodes. (b) SignalPro® simulation result on the DEM points. (c) Ground-truth graph signal for extrapolation. (d)
Ground-truth graph signal for interpolation.

Signal Processing 216 (2024) 109308I. Zach et al.
Fig. 13. Bulgaria beacons: manifold of Gaussian mixture demonstration. The first two principal components of PCA. (a) Given 𝑛 points. (b) Points generated from learned GMM
parameters.
Fig. 14. Bulgaria beacons: interpolated graph signals on 𝑛 points sampled from the grid of 𝑁 nodes. Taken from the first iteration in the first experiment with 𝓁 = 25 sensors. Blue
diamonds: two transmitters. Green circles: 𝓁 = 25 sensors. (a) RoMix. (b) Representer Theorem [29]. (c) Nyström method [19]. (d) Variational Spline in Paley–Weiner space [21].
(e) Weighted k-nearest neighbors [66].
position, 𝒑𝑖 = [𝑥𝑖, 𝑦𝑖, 𝑧𝑖]𝑇 . The second feature is the Free-Space Path-
Loss (FSPL) from each of the two transmitters to 𝒑𝑖, i.e., for 𝑗 = 1, 2:
FSPL(𝒑𝑖,𝒑TX𝑗) =

(

4𝜋‖𝒑𝑖−𝒑TX𝑗 ‖R3∕𝜆
)2 where 𝜆 = 𝑐∕𝑓 , and 𝑐 is the speed

of light. The third feature is the indication {0, 1} of Line of Sight (LoS)
existence between each transmitter to the point 𝑖. The last feature is the
LoS2, which counts the number of LoS paths between a transmitter to
the point 𝑖 through any other neighboring point in the grid. Each node
𝑖 is therefore associated with the 9-𝑑 feature vector 𝒛𝑖 ∈ :

𝒛𝑖 = [𝒑𝑇𝑖 , {FSPL(𝒑𝑖,𝒑TX𝑗)}
2
𝑗=1, {LoS(𝒑𝑖,𝒑TX𝑗)}

2
𝑗=1, {LoS2(𝒑𝑖,𝒑TX𝑗)}

2
𝑗=1]

𝑇 .

Finally, for numerical stability, we normalize the features to have an
even scale between [0, 1]. We summarize the features in Table 4.

We visualize the first step of Algorithm 1, the GMM fit, to 𝑛 = 6000
randomly sampled points from the grid of the corresponding latent
15
Table 4
Bulgaria beacons: 9-𝑑 latent space representation.

Feature Expression Dimension

Position 𝒑𝑖 = [𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖]𝑇 3
Free Space Path Loss

(

4𝜋‖𝒑𝑖 − 𝒑TX𝑗 ‖R3∕𝜆
)2 2 (one for each TX)

Line of Sight indication LoS(𝒑𝑖 ,𝒑TX𝑗) ∈ {0, 1} 2 (one for each TX)
No. of 2-hop Line of Sight paths LoS2(𝒑𝑖 ,𝒑TX𝑗) 2 (one for each TX)

representations {𝒛𝑖}𝑛𝑖=1. For the visualization, we reduce the dimension
of the sampled points to R2 using a Principal Component Analysis
(PCA) [71]. The results are presented in Fig. 13(a). We then randomly
generate new samples from the learned GMM parameters with 𝑘 = 8
components and perform a similar visualization using PCA. The result is

Signal Processing 216 (2024) 109308I. Zach et al.
Fig. 15. Bulgaria beacons: extrapolated graph signals on the grid of 𝑁 nodes. Taken from the first iteration in the first experiment with 𝓁 = 25 sensors. Blue diamonds: two
transmitters. Green circles: 𝓁 = 25 sensors. (a) RoMix. (b) Representer Theorem [29]. (c) Nyström method [19]. (d) Variational Spline in Paley-Weiner space [21]. (e) Weighted
k-nearest neighbors [66].
Fig. 16. Bulgaria beacons: errors and run times results. (a) Interpolation error (39) of each method (𝑛 points). Black box: focus on the bottom of the figure. (b) Extrapolation
error (39) of each method (entire grid of 𝑁 points). Black box: focus on the bottom of the figure. (c) Interpolation time of each method (log scale).
presented in Fig. 13(b), where each color represents the most probable
component to which the generated point relates. We can observe four
point clouds due to the LoS feature with two transmitters, i.e., there
are |{0, 1}|2 = 4 options for LoS existence from two transmitters to each
node. We observe that the obtained first two principal components of
the generated points resemble the first two principal components of
the sampled 𝑛 points. We note that the 𝑘 = 8 components partially
overlap when projecting the generated points on the first two principal
components. However, we assume the separation in the higher 9-𝑑
latent space is better.

To test the performance of Algorithm 1 and the competing methods
presented in Table 2, we run four experiments with different values
16
of 𝓁, the number of sensors spread on the grid of 𝑁 nodes. In each
experiment, we run 𝑅 = 10 Monte-Carlo iterations of the following
procedure. We randomly sample 𝑛 = 6000 points from the latent space
of 𝑁 = 100 × 100 feature vectors and arrange them in the input matrix
𝐕 ∈ R𝑛×𝑑 . Then, we randomly select 𝓁 < 𝑛 nodes for the 𝓁 sensors
placements and build the graph signal on the 𝓁 subset of nodes from 𝒔̃ ∈
R𝑁 at the locations of the sensors, having 𝒔𝓁 . Algorithm 1 parameters
are presented in Table 5. Samples from the first iteration in the first
experiment with 𝓁 = 25 sensors are presented in Fig. 14. The title of
each sub-figure states the name of the interpolation method. Similarly,
we present in Fig. 15 the extrapolation results on the entire grid. Since
the graph signal values are in units of [dBm], we set the metric in this

Signal Processing 216 (2024) 109308I. Zach et al.

H

T
b
𝑔

s
i
u
𝑓

D
a

f

b
𝐾

D
𝐾
f
{
s

p
M
f

p
i
t
c
d
p
k

A

a
d
𝑝
b

∫

a

⟨

Table 5
Bulgaria beacons: Algorithm 1 parameters.
Parameter Value

Kernel width 𝜔 = 1.5
GMM comp. 𝑘 = 8
eigs. 𝑀 = 100
‖ ⋅ ‖𝐾

penalty 𝛾 = 0.3

simulation to be the error in dB per node:

Err(𝒔algo, 𝒔) = 1
𝑅

𝑅
∑

𝑟=1

1
√

𝑛
‖

‖

‖

𝒔algo
𝑟 − 𝒔‖‖

‖

[dB/node]. (39)

The obtained results in terms of the error metric in (39) and the
corresponding interpolation run times are presented in Fig. 16. We
observe that the shortest run time and lowest error per node are
achieved by Algorithm 1.

6. Conclusion

In this work, we propose a continuous domain approach for graph
signal interpolation and extrapolation. We present a continuous domain
model for graph signals, interpolation and extrapolation algorithm, and
several synthetic and real-world test cases for performance evaluation.
Our model relies on the typical construction of the graph adjacency
matrix using a kernel function. In this case, a unique RKHS of functions
is imposed. Therefore, we model a (discrete) graph signal over the
(discrete) set of graph nodes as samples of a (continuous) function
over a (continuous) manifold in that RKHS. We focus on the popular
choice of a Gaussian kernel. This kernel provides us with closed-form
expressions for the eigenbasis of the RKHS when the data distribution
is Gaussian. Under a Gaussian mixture, the eigenbasis can be approx-
imated using those closed-form expressions. Therefore, we model the
manifold of nodes as a Gaussian mixture, either directly in the ambient
space or indirectly in an embedded space. We then exploit the closed-
form eigenbasis expressions in our interpolation and extrapolation
efficient algorithm. We compare our algorithm performance to existing
methods and show that it achieves on-par or better accuracy while
being computationally more efficient and requiring shorter run times.

CRediT authorship contribution statement

Itay Zach: Conceptualization, Methodology, Writing – original draft,
Software. Tsvi G. Dvorkind: Conceptualization, Methodology, Super-
vision, Writing – review & editing. Ronen Talmon: Conceptualization,
Methodology, Supervision, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Code and data at github.com/itayzach/RoMix.

Acknowledgments

We wish to thank the Associate Editor and the reviewers for their
useful comments, which helped us to improve the manuscript signifi-
cantly.
17
Appendix A. Elaborated reproducing kernel Hilbert space theory

All definitions were taken from [27,28] (based on [25]) with ad-
justments to our notations and to the field of real numbers, R, rather
than the complex numbers, C. Refer to [26] for an excellent discussion
and further references for this section.

Definition A.1 (Reproducing Kernel Hilbert Space (RKHS) (Ch. 1 of
[27])). Let  be a set and denote by  ( ,R) the set of all functions
from  to R. We will call a subset  ⊂  ( ,R) a reproducing kernel

ilbert space on  over R if:

1.  is a vector subspace of  ( ,R).
2.  is a Hilbert space endowed with an inner product ⟨⋅, ⋅⟩ .
3. For every 𝑥 ∈  , the linear evaluation functional 𝛿𝑥 ∶  → R

defined by 𝛿𝑥(𝑓) = 𝑓 (𝑥) is bounded.

heorem A.1 (Riesz Representation Theorem (Ch. 2 of [28])). If 𝐿 is a
ounded linear functional on a Hilbert space , then there exists a unique
∈  such that for all 𝑓 ∈ , 𝐿(𝑓) = ⟨𝑓, 𝑔⟩ .

By applying the Riesz representation theorem on an RKHS , and
ince a linear functional on a Hilbert space is bounded if and only
f it is continuous, we can say that for every 𝑥 ∈  there exists a
nique function we denote by 𝑘𝑥 ∈  such that for every 𝑓 ∈ ,
(𝑥) = 𝛿𝑥(𝑓) = ⟨𝑓, 𝑘𝑥⟩ .

efinition A.2 (Reproducing Kernel (Ch. 1 of [27])). The function 𝑘𝑥
bove is the reproducing kernel for the point 𝑥. The function 𝐾 ∶
×  → R defined by 𝐾(𝑥, 𝑦) = 𝑘𝑦(𝑥) is called the reproducing kernel

or .

A direct corollary of Definition A.2 is that a reproducing kernel must
e a symmetric function since 𝐾(𝑥, 𝑦) = 𝑘𝑦(𝑥) = ⟨𝑘𝑦, 𝑘𝑥⟩ = ⟨𝑘𝑥, 𝑘𝑦⟩ =
(𝑦, 𝑥) where the third equality is due to working with R.

efinition A.3 (Kernel Function (Ch. 2 of [27])). Let  be a set and let
∶ × → R be a function of two variables. Then 𝐾 is called a kernel

unction provided that for every 𝑛 and for every choice of distinct points
𝑥1,… , 𝑥𝑛} ⊆  the matrix 𝐊 defined by 𝐊𝑖,𝑗 = 𝐾(𝑥𝑖, 𝑥𝑗) is positive
emi-definite matrix. i.e., 𝐱𝑇𝐊𝐱 ≥ 0, where 𝐱 = [𝑥1,… , 𝑥𝑛]𝑇 .

It is possible to show (Ch. 2 of [27]) that there is a unique re-
roducing kernel associated with a given RKHS. Conversely, as the
oore-Aronszajn theorem suggests (Ch. 2 of [27]), given a kernel

unction (Definition A.3) 𝐾 ∶  ×  → R there exists a unique RKHS
for which 𝐾 is a reproducing kernel. In order to emphasize this

roperty, we denote the RKHS defined by the kernel 𝐾 as 𝐾 and its
nner product by ⟨⋅, ⋅⟩𝐾

. In our context, this implies that whenever
he affinity of graph nodes is defined by a kernel function 𝐾 we
an associate an RKHS, 𝐾 , within which we derive our ‘continuous-
omain’ models. The corresponding RKHS of 𝐾 has the reproducing
roperty : any function in the space can be expressed in terms of its
ernel function, i.e., 𝑓 (𝑥) = ⟨𝑓, 𝑘𝑥⟩𝐾

.

.1. Spectral theorem for the kernel operator

Consider the space of square-integrable real functions over the
mbient space  , with respect to the probability measure 𝑃 . We
enote the space by 2

𝑝() where 𝑝 is the probability density, i.e., 𝑑𝑃 =
(𝑥)𝑑𝑥, and denote the inner product in 2

𝑝() by ⟨⋅, ⋅⟩2
𝑝
. A function 𝑓

elongs to 2
𝑝() if the following holds:


𝑓 (𝑥)2𝑝(𝑥)𝑑𝑥 <∞,

nd the inner product for 𝑓, 𝑔 ∈ 2
𝑝() is:

𝑓, 𝑔⟩ 2 = 𝑓 (𝑥)𝑔(𝑥)𝑝(𝑥)𝑑𝑥. (A.1)
𝑝 ∫

https://github.com/itayzach/RoMix

Signal Processing 216 (2024) 109308I. Zach et al.

w
a

𝑤
l
a
f
a

The operator 𝐿𝐾 (4) is compact (Theorem 2.29 in [72]) and self-
adjoint (Ch. 3 of [26]) and therefore satisfies the conditions for the
Spectral Theorem (Ch. 2 of [26], Sec. 4.10 of [73]) stating that for
every compact, self-adjoint operator on an infinite-dimensional Hilbert
space, there exists an orthonormal system of eigenfunctions denoted
by {𝜙𝑚}∞𝑚=0 corresponding to real, non-negative eigenvalues denoted
by {𝜆𝑚}∞𝑚=0 that are countable and can be sorted in decreasing order,
i.e., 𝜆0 ≥ 𝜆1 ≥ ⋯ ≥ 0. Furthermore, the eigenvalues decay to zero,
i.e., 𝜆𝑚

𝑚→∞
←←←←←←←←←←←←←←←←←←←←←←←→ 0. We, therefore, have the following:

(𝐿𝐾𝜙𝑚)(𝑥) = ⟨𝑘𝑥, 𝜙𝑚⟩2
𝑝
= 𝜆𝑚𝜙𝑚(𝑥). (A.2)

This allows us to express any function 𝑓 ∈ 𝐾 in terms of the kernel
operator eigenfunctions. Namely, if 𝑓 ∈ 𝐾 there exist expansion
coefficients {𝑐𝑚}∞𝑚=0 ∈ R such that:

𝑓 (𝑥) =
∞
∑

𝑚=0
𝑐𝑚𝜙𝑚(𝑥), 𝑐𝑚 = ⟨𝑓, 𝜙𝑚⟩2

𝑝
, ∀𝑥 ∈  . (A.3)

The inner product (A.1) can be therefore expressed in terms of the
expansion coefficients. For 𝑓 =

∑

𝑚 𝑐𝑚𝜙𝑚, 𝑔 =
∑

𝓁 𝑐
′
𝓁𝜙𝓁 :

⟨𝑓, 𝑔⟩2
𝑝
=

∞
∑

𝑚,𝓁=0
𝑐𝑚𝑐

′
𝓁⟨𝜙𝑚, 𝜙𝓁⟩2

𝑝
=

∞
∑

𝑚=0
𝑐𝑚𝑐

′
𝑚. (A.4)

This construction of the RKHS is used by Mercer theorem [58],
meaning the kernel function can be expressed using the eigenfunctions
in (A.2):

𝐾(𝑥, 𝑦) =
∞
∑

𝑚=0
𝜆𝑚𝜙𝑚(𝑥)𝜙𝑚(𝑦).

For the induced norm (7) to be convergent, the function expan-
sion coefficients must decay faster than the kernel operator eigenval-
ues, i.e.,

(𝑐𝑚
√

𝜆𝑚

)

∈ 𝓁2. Intuitively, by interpreting the eigenvalues as
frequencies, a function in the RKHS must be ‘‘smooth’’ over its domain.

Appendix B. Example: VAE computational complexity analysis

Consider a conventional Keras implementation of a convolutional
VAE [74]. A forward pass of a convolutional layer for a batch of 𝑏 inputs

here each input dimension is 𝑑2in of 𝑐in channels, a filter of size 𝑓 × 𝑓
nd 𝑐out output channels, has a time complexity of (𝑏𝑑2in𝑐in𝑓

2𝑐out). A
forward pass of a fully connected layer for a batch of 𝑏 inputs and

weights is (𝑏𝑑2in𝑐in𝑤). In the encoder, there are two convolutional
ayers followed by a fully connected layer, and in the decoder, there is
fully connected layer followed by two convolutional layers. Since the

ilter size in a convolutional layer is much smaller than the batch size
nd the input dimensionality, i.e., 𝑓 ≪ 𝑏, and 𝑓 ≪ 𝑑2in, and the fact that

the dimensionality in a VAE decreases with each layer, it is possible to
bound the overall complexity by (𝑏𝑑2). Since the backward pass is
less computationally demanding, the overall training of a VAE can be
bounded by (𝑡𝑏𝑑2) where 𝑡 is the number of epochs.

References

[1] D.I. Shuman, S.K. Narang, P. Frossard, A. Ortega, P. Vandergheynst, The
emerging field of signal processing on graphs: Extending high-dimensional data
analysis to networks and other irregular domains, IEEE Signal Process. Mag. 30
(3) (2013) 83–98, http://dx.doi.org/10.1109/MSP.2012.2235192.

[2] A. Ortega, P. Frossard, J. Kovacevic, J.M. Moura, P. Vandergheynst, Graph
signal processing: Overview, challenges, and applications, Proc. IEEE (2018)
http://dx.doi.org/10.1109/JPROC.2018.2820126.

[3] F.R.K. Chung, Spectral Graph Theory, Vol. 92, American Mathematical Soc.,
1997.

[4] S. Colonnese, M. Petti, L. Farina, G. Scarano, F. Cuomo, Protein-protein in-
teraction prediction via graph signal processing, IEEE Access 9 (2021) http:
//dx.doi.org/10.1109/ACCESS.2021.3119569.

[5] D.M. Mohan, M.T. Asif, N. Mitrovic, J. Dauwels, P. Jaillet, Wavelets on
graphs with application to transportation networks, in: 2014 17th IEEE Inter-
national Conference on Intelligent Transportation Systems, ITSC 2014, 2014, pp.
1707–1712, http://dx.doi.org/10.1109/ITSC.2014.6957939.
18
[6] K. He, L. Stankovic, J. Liao, V. Stankovic, Non-intrusive load disaggregation
using graph signal processing, IEEE Trans. Smart Grid 9 (3) (2018) 1739–1747,
http://dx.doi.org/10.1109/TSG.2016.2598872.

[7] M.M. Bronstein, J. Bruna, Y. Lecun, A. Szlam, P. Vandergheynst, Geometric deep
learning: Going beyond Euclidean data, IEEE Signal Process. Mag. 34 (4) (2017)
18–42, http://dx.doi.org/10.1109/MSP.2017.2693418.

[8] Z. Huang, W. Chung, T.-H. Ong, H. Chen, A graph-based recommender system
for digital library, in: Proceedings of the 2nd ACM/IEEE-CS Joint Conference on
Digital Libraries, 2002, pp. 65–73, http://dx.doi.org/10.1145/544229.544231.

[9] S.K. Narang, A. Gadde, A. Ortega, Signal processing techniques for interpolation
in graph structured data, in: ICASSP, IEEE International Conference on Acoustics,
Speech and Signal Processing - Proceedings, 2013, pp. 5445–5449, http://dx.doi.
org/10.1109/ICASSP.2013.6638704.

[10] S. Chen, A. Sandryhaila, J.M. Moura, J. Kovacevic, Signal recovery on graphs:
Variation minimization, IEEE Trans. Signal Process. 63 (17) (2015) 4609–4624,
http://dx.doi.org/10.1109/TSP.2015.2441042.

[11] M. Kaneko, G. Cheung, W.T. Su, C.W. Lin, Graph-based joint signal/power
restoration for energy harvesting wireless sensor networks, in: 2017 IEEE Global
Communications Conference, GLOBECOM 2017 - Proceedings, Vol. 2018-Janua,
2017, pp. 1–6, http://dx.doi.org/10.1109/GLOCOM.2017.8254798.

[12] V. Kalofolias, How to learn a graph from smooth signals, in: A. Gretton, C.C.
Robert (Eds.), Proceedings of the 19th International Conference on Artificial
Intelligence and Statistics, in: Proceedings of Machine Learning Research, vol.
51, PMLR, Cadiz, Spain, 2016, pp. 920–929, URL https://proceedings.mlr.press/
v51/kalofolias16.html.

[13] X. Dong, D. Thanou, P. Frossard, P. Vandergheynst, Learning Laplacian matrix in
smooth graph signal representations, IEEE Trans. Signal Process. 64 (23) (2016)
6160–6173, http://dx.doi.org/10.1109/TSP.2016.2602809.

[14] A. Gadde, A. Anis, A. Ortega, Active semi-supervised learning using sampling
theory for graph signals, in: Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2014, pp. 492–501,
http://dx.doi.org/10.1145/2623330.2623760.

[15] S. Chen, R. Varma, A. Sandryhaila, J. Kovačević, Discrete signal processing on
graphs: Sampling theory, IEEE Trans. Signal Process. (2015) http://dx.doi.org/
10.1109/TSP.2015.2469645.

[16] A. Heimowitz, Y.C. Eldar, The Nyström extension for signals defined on a
graph, in: ICASSP, IEEE International Conference on Acoustics, Speech and
Signal Processing - Proceedings, 2018, pp. 4199–4203, http://dx.doi.org/10.
1109/ICASSP.2018.8462408.

[17] S. Mousazadeh, I. Cohen, Out-of-sample extension of band-limited functions
on homogeneous manifolds using diffusion maps, Signal Process. 108 (2015)
http://dx.doi.org/10.1016/j.sigpro.2014.10.024.

[18] R.R. Coifman, S. Lafon, Diffusion maps, Appl. Comput. Harmon. Anal. 21 (1)
(2006) 5–30, http://dx.doi.org/10.1016/j.acha.2006.04.006.

[19] C. Fowlkes, S. Belongie, F. Chung, J. Malik, Spectral grouping using the Nyström
method, IEEE Trans. Pattern Anal. Mach. Intell. (2004) http://dx.doi.org/10.
1109/TPAMI.2004.1262185.

[20] D.I. Shuman, M.J. Faraji, P. Vandergheynst, A multiscale pyramid transform
for graph signals, IEEE Trans. Signal Process. 64 (8) (2016) 2119–2134, http:
//dx.doi.org/10.1109/TSP.2015.2512529.

[21] I. Pesenson, Variational splines and Paley-Wiener spaces on combinatorial graphs,
Constr. Approx. (2009) http://dx.doi.org/10.1007/s00365-007-9004-9.

[22] D. Romero, M. Ma, G.B. Giannakis, Kernel-based reconstruction of graph signals,
IEEE Trans. Signal Process. 65 (3) (2017) 764–778, http://dx.doi.org/10.1109/
TSP.2016.2620116.

[23] V.N. Ioannidis, M. Ma, A.N. Nikolakopoulos, G.B. Giannakis, D. Romero, Chapter
8 - Kernel-based inference of functions over graphs, in: D. Comminiello, J.C.
Príncipe (Eds.), Adaptive Learning Methods for Nonlinear System Modeling,
Butterworth-Heinemann, 2018, pp. 173–198, http://dx.doi.org/10.1016/B978-0-
12-812976-0.00010-5, URL https://www.sciencedirect.com/science/article/pii/
B9780128129760000105.

[24] W. Erb, Graph signal interpolation with positive definite graph basis functions,
Appl. Comput. Harmon. Anal. 60 (2022) 368–395, http://dx.doi.org/10.1016/J.
ACHA.2022.03.005.

[25] N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. (1950)
http://dx.doi.org/10.2307/1990404.

[26] F. Cucker, S. Smale, On the mathematical foundations of learning, Bull. Amer.
Math. Soc. 39 (1) (2002) 1–49, http://dx.doi.org/10.1090/S0273-0979-01-
00923-5.

[27] V.I. Paulsen, M. Raghupathi, An Introduction to the Theory of Reproducing
Kernel Hilbert Spaces, Cambridge University Press, 2016, http://dx.doi.org/10.
1017/CBO9781316219232.

[28] I. Gohberg, S. Goldberg, M.A. Kaashoek, Spectral theory of integral operators, in:
Basic Classes of Linear Operators, Birkhäuser Basel, Basel, 2003, pp. 193–202,
http://dx.doi.org/10.1007/978-3-0348-7980-4_5.

[29] B. Scholkopf, A.J. Smola, Learning with kernels: Support vector machines,
regularization, Optim. Beyond 10 (2001).

[30] A. Mazarguil, L. Oudre, N. Vayatis, Non-smooth interpolation of graph signals,
Signal Process. 196 (2022) http://dx.doi.org/10.1016/j.sigpro.2022.108480.

http://dx.doi.org/10.1109/MSP.2012.2235192
http://dx.doi.org/10.1109/JPROC.2018.2820126
http://refhub.elsevier.com/S0165-1684(23)00382-1/sb3
http://refhub.elsevier.com/S0165-1684(23)00382-1/sb3
http://refhub.elsevier.com/S0165-1684(23)00382-1/sb3
http://dx.doi.org/10.1109/ACCESS.2021.3119569
http://dx.doi.org/10.1109/ACCESS.2021.3119569
http://dx.doi.org/10.1109/ACCESS.2021.3119569
http://dx.doi.org/10.1109/ITSC.2014.6957939
http://dx.doi.org/10.1109/TSG.2016.2598872
http://dx.doi.org/10.1109/MSP.2017.2693418
http://dx.doi.org/10.1145/544229.544231
http://dx.doi.org/10.1109/ICASSP.2013.6638704
http://dx.doi.org/10.1109/ICASSP.2013.6638704
http://dx.doi.org/10.1109/ICASSP.2013.6638704
http://dx.doi.org/10.1109/TSP.2015.2441042
http://dx.doi.org/10.1109/GLOCOM.2017.8254798
https://proceedings.mlr.press/v51/kalofolias16.html
https://proceedings.mlr.press/v51/kalofolias16.html
https://proceedings.mlr.press/v51/kalofolias16.html
http://dx.doi.org/10.1109/TSP.2016.2602809
http://dx.doi.org/10.1145/2623330.2623760
http://dx.doi.org/10.1109/TSP.2015.2469645
http://dx.doi.org/10.1109/TSP.2015.2469645
http://dx.doi.org/10.1109/TSP.2015.2469645
http://dx.doi.org/10.1109/ICASSP.2018.8462408
http://dx.doi.org/10.1109/ICASSP.2018.8462408
http://dx.doi.org/10.1109/ICASSP.2018.8462408
http://dx.doi.org/10.1016/j.sigpro.2014.10.024
http://dx.doi.org/10.1016/j.acha.2006.04.006
http://dx.doi.org/10.1109/TPAMI.2004.1262185
http://dx.doi.org/10.1109/TPAMI.2004.1262185
http://dx.doi.org/10.1109/TPAMI.2004.1262185
http://dx.doi.org/10.1109/TSP.2015.2512529
http://dx.doi.org/10.1109/TSP.2015.2512529
http://dx.doi.org/10.1109/TSP.2015.2512529
http://dx.doi.org/10.1007/s00365-007-9004-9
http://dx.doi.org/10.1109/TSP.2016.2620116
http://dx.doi.org/10.1109/TSP.2016.2620116
http://dx.doi.org/10.1109/TSP.2016.2620116
http://dx.doi.org/10.1016/B978-0-12-812976-0.00010-5
http://dx.doi.org/10.1016/B978-0-12-812976-0.00010-5
http://dx.doi.org/10.1016/B978-0-12-812976-0.00010-5
https://www.sciencedirect.com/science/article/pii/B9780128129760000105
https://www.sciencedirect.com/science/article/pii/B9780128129760000105
https://www.sciencedirect.com/science/article/pii/B9780128129760000105
http://dx.doi.org/10.1016/J.ACHA.2022.03.005
http://dx.doi.org/10.1016/J.ACHA.2022.03.005
http://dx.doi.org/10.1016/J.ACHA.2022.03.005
http://dx.doi.org/10.2307/1990404
http://dx.doi.org/10.1090/S0273-0979-01-00923-5
http://dx.doi.org/10.1090/S0273-0979-01-00923-5
http://dx.doi.org/10.1090/S0273-0979-01-00923-5
http://dx.doi.org/10.1017/CBO9781316219232
http://dx.doi.org/10.1017/CBO9781316219232
http://dx.doi.org/10.1017/CBO9781316219232
http://dx.doi.org/10.1007/978-3-0348-7980-4_5
http://refhub.elsevier.com/S0165-1684(23)00382-1/sb29
http://refhub.elsevier.com/S0165-1684(23)00382-1/sb29
http://refhub.elsevier.com/S0165-1684(23)00382-1/sb29
http://dx.doi.org/10.1016/j.sigpro.2022.108480

Signal Processing 216 (2024) 109308I. Zach et al.
[31] A. Venkitaraman, S. Chatterjee, P. Handel, Predicting graph signals using kernel
regression where the input signal is agnostic to a graph, IEEE Trans. Signal Inf.
Process. Netw. 5 (4) (2019) http://dx.doi.org/10.1109/TSIPN.2019.2936358.

[32] B. Das, E. Isufi, Learning expanding graphs for signal interpolation, in: ICASSP
2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing, ICASSP, 2022, pp. 5917–5921, http://dx.doi.org/10.1109/ICASSP43922.
2022.9747156.

[33] S. Mousazadeh, I. Cohen, Embedding and function extension on directed graph,
Signal Process. 111 (2015) http://dx.doi.org/10.1016/j.sigpro.2014.12.019.

[34] V.R.M. Elias, V.C. Gogineni, W.A. Martins, S. Werner, Kernel regression over
graphs using random Fourier features, IEEE Trans. Signal Process. 70 (2022)
http://dx.doi.org/10.1109/TSP.2022.3149134.

[35] A. Rahimi, B. Recht, Random features for large-scale kernel machines, Adv.
Neural Inf. Process. Syst. 20 (2007).

[36] P. Giménez-Febrer, A. Pagès-Zamora, G.B. Giannakis, Matrix completion and
extrapolation via kernel regression, IEEE Trans. Signal Process. 67 (19) (2019)
http://dx.doi.org/10.1109/TSP.2019.2932875.

[37] Y. Shen, G. Leus, G.B. Giannakis, Online graph-adaptive learning with scalability
and privacy, IEEE Trans. Signal Process. 67 (9) (2019) 2471–2483, http://dx.doi.
org/10.1109/TSP.2019.2904922.

[38] M. Belkin, P. Niyogi, V. Sindhwani, Manifold regularization: A geometric
framework for learning from labeled and unlabeled examples, J. Mach. Learn.
Res. 7 (2006) 2399–2434, URL http://www.cse.msu.edu/.

[39] M. Belkin, P. Niyogi, Convergence of Laplacian eigenmaps, Adv. Neural Inf.
Process. Syst. (2007) 129–136, http://dx.doi.org/10.7551/mitpress/7503.003.
0021.

[40] A. Singer, From graph to manifold Laplacian: The convergence rate, Appl.
Comput. Harmon. Anal. (2006) http://dx.doi.org/10.1016/j.acha.2006.03.004.

[41] C.M. Bishop, Pattern Recognition and Machine Learning (Information Science
and Statistics), Springer-Verlag, Berlin, Heidelberg, 2006.

[42] N. Cressie, Statistics for Spatial Data, John Wiley & Sons, 2015.
[43] A. Menafoglio, P. Secchi, M. Dalla Rosa, A universal Kriging predictor for

spatially dependent functional data of a Hilbert space, Electron. J. Stat. 7 (1)
(2013) http://dx.doi.org/10.1214/13-EJS843.

[44] D. Nerini, P. Monestiez, C. Manté, Cokriging for spatial functional data, J.
Multivariate Anal. 101 (2) (2010) 409–418, http://dx.doi.org/10.1016/J.JMVA.
2009.03.005.

[45] A. Menafoglio, G. Petris, Kriging for Hilbert-space valued random fields: The
operatorial point of view, J. Multivariate Anal. 146 (2016) 84–94, http://dx.doi.
org/10.1016/J.JMVA.2015.06.012.

[46] A. Sandryhaila, J.M. Moura, Discrete signal processing on graphs, IEEE Trans.
Signal Process. (2013) http://dx.doi.org/10.1109/TSP.2013.2238935.

[47] A. Sandryhaila, J.M. Moura, Discrete signal processing on graphs: Graph fourier
transform, in: ICASSP, IEEE International Conference on Acoustics, Speech and
Signal Processing - Proceedings, 2013, pp. 6167–6170, http://dx.doi.org/10.
1109/ICASSP.2013.6638850.

[48] A. Sandryhaila, J.M. Moura, Discrete signal processing on graphs: Graph filters,
in: ICASSP, IEEE International Conference on Acoustics, Speech and Signal
Processing - Proceedings, 2013, pp. 6163–6166, http://dx.doi.org/10.1109/
ICASSP.2013.6638849.

[49] A. Sandryhaila, J.M. Moura, Discrete signal processing on graphs: Frequency
analysis, IEEE Trans. Signal Process. (2014) http://dx.doi.org/10.1109/TSP.2014.
2321121.

[50] K.S. Lu, A. Ortega, Fast graph Fourier transforms based on graph symmetry
and bipartition, IEEE Trans. Signal Process. 67 (18) (2019) http://dx.doi.org/10.
1109/TSP.2019.2932882.

[51] V. Vaibhav, New method of bandlimited extrapolation, 2018, arXiv preprint
arXiv:1804.04713.

[52] H. Zhu, C.K.I. Williams, R. Rohwer, M. Morciniec, Gaussian regression and
optimal finite dimensional linear models, Neural Netw. Mach. Learn., C. Bishop
(1998).

[53] T. Shi, M. Belkin, B. Yu, Data spectroscopy: Learning mixture models using
eigenspaces of convolution operators, in: Proceedings of the 25th International
Conference on Machine Learning, 2008, pp. 936–943.
19
[54] J. Liu, D. Cai, X. He, Gaussian mixture model with local consistency, in:
Proceedings of the National Conference on Artificial Intelligence, Vol. 24, 2010,
pp. 512–517.

[55] X. He, D. Cai, Y. Shao, H. Bao, J. Han, Laplacian regularized Gaussian mix-
ture model for data clustering, IEEE Trans. Knowl. Data Eng. 23 (9) (2011)
1406–1418, http://dx.doi.org/10.1109/TKDE.2010.259.

[56] J. Shen, J. Bu, B. Ju, T. Jiang, H. Wu, L. Li, Refining Gaussian mixture
model based on enhanced manifold learning, Neurocomputing 87 (2012) http:
//dx.doi.org/10.1016/j.neucom.2012.01.029.

[57] D.P. Kingma, M. Welling, Auto-encoding variational Bayes, in: Y. Bengio, Y.
LeCun (Eds.), 2nd International Conference on Learning Representations, ICLR
2014, Banff, AB, Canada, April 14–16, 2014, Conference Track Proceedings,
2014, pp. 1–14, URL http://arxiv.org/abs/1312.6114.

[58] J. Mercer, Functions of positive and negative type, and their connection with the
theory of integral equations, Proc. R. Soc. Lond. Ser. A 83 (559) (1909) 69–70,
http://dx.doi.org/10.1098/rspa.1909.0075.

[59] C.K.I. Williams, M.M. Seeger, The effect of the input density distribution on
kernel-based classifiers, in: Proceedings of the 17th International Conference
on Machine Learning, 2000, pp. 1159–1166, http://dx.doi.org/10.1371/journal.
pone.0189208, URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.
18.6714.

[60] Y. LeCun, C. Cortes, MNIST handwritten digit database, 2010, AT&T Labs
[Online]. Available: http://yann.lecun.com/exdb/mnist, 7.

[61] S. Lafon, Diffusion Maps and Geometric Harmonics, No. May (Ph.D. thesis), Yale
University, 2004, pp. 1–87.

[62] V. Chandola, R.R. Vatsavai, D. Kumar, A. Ganguly, Analyzing big spatial and
big spatiotemporal data: A case study of methods and applications, Handbook
of Statist. 33 (2015) 239–258, http://dx.doi.org/10.1016/B978-0-444-63492-
4.00010-1.

[63] I. Zach, RoMix github page, 2022, URL https://github.com/itayzach/RoMix/.
[64] C.J. Dsilva, R. Talmon, R.R. Coifman, I.G. Kevrekidis, Parsimonious representa-

tion of nonlinear dynamical systems through manifold learning: A chemotaxis
case study, Appl. Comput. Harmon. Anal. 44 (3) (2018) http://dx.doi.org/10.
1016/j.acha.2015.06.008.

[65] N. Perraudin, J. Paratte, D. Shuman, L. Martin, V. Kalofolias, P. Vandergheynst,
D.K. Hammond, GSPBOX: A toolbox for signal processing on graphs, 2014, arXiv
e-prints.

[66] O. Kramer, Dimensionality reduction with unsupervised nearest neighbors, Intell.
Syst. Ref. Libr. 51 (2013) 21–22, http://dx.doi.org/10.1007/978-3-642-38652-7.

[67] Y. Bengio, J.F. Paiement, P. Vincent, O. Delalleau, N. Le Roux, M. Ouimet, Out-
of-sample extensions for LLE, Isomap, MDS, Eigenmaps, and spectral clustering,
in: Advances in Neural Information Processing Systems, 2004, pp. 1–8.

[68] J.H. Friedman, J.L. Bentley, R.A. Finkel, An algorithm for finding best matches
in logarithmic expected time, ACM Trans. Math. Softw. 3 (3) (1977) 209–226,
http://dx.doi.org/10.1145/355744.355745.

[69] Shuttle Radar Topography Mission (SRTM) Global, NASA shuttle radar topogra-
phy mission (SRTM), in: Distributed By OpenTopography, 2013, http://dx.doi.
org/10.5069/G9445JDF.

[70] T.G. Dvorkind, Y.C. Eldar, Geolocation with graph-based model fitting, in:
2019 IEEE 8th International Workshop on Computational Advances in Multi-
Sensor Adaptive Processing, CAMSAP 2019 - Proceedings, Institute of Electrical
and Electronics Engineers Inc., 2019, pp. 356–360, http://dx.doi.org/10.1109/
CAMSAP45676.2019.9022614.

[71] I. Jolliffe, Principal component analysis, in: M. Lovric (Ed.), International En-
cyclopedia of Statistical Science, Springer Berlin Heidelberg, Berlin, Heidelberg,
2011, pp. 1094–1096, http://dx.doi.org/10.1007/978-3-642-04898-2_455.

[72] S. Saitoh, Y. Sawano, Fundamental properties of RKHS, in: Theory of Reproduc-
ing Kernels and Applications, Springer Singapore, Singapore, 2016, pp. 65–160,
http://dx.doi.org/10.1007/978-981-10-0530-5_2.

[73] L. Debnath, P. Mikusinski, et al., Introduction to Hilbert Spaces with
Applications, Academic Press, 2005.

[74] F. Chollet, et al., Keras, 2015, URL https://keras.io.

http://dx.doi.org/10.1109/TSIPN.2019.2936358
http://dx.doi.org/10.1109/ICASSP43922.2022.9747156
http://dx.doi.org/10.1109/ICASSP43922.2022.9747156
http://dx.doi.org/10.1109/ICASSP43922.2022.9747156
http://dx.doi.org/10.1016/j.sigpro.2014.12.019
http://dx.doi.org/10.1109/TSP.2022.3149134
http://refhub.elsevier.com/S0165-1684(23)00382-1/sb35
http://refhub.elsevier.com/S0165-1684(23)00382-1/sb35
http://refhub.elsevier.com/S0165-1684(23)00382-1/sb35
http://dx.doi.org/10.1109/TSP.2019.2932875
http://dx.doi.org/10.1109/TSP.2019.2904922
http://dx.doi.org/10.1109/TSP.2019.2904922
http://dx.doi.org/10.1109/TSP.2019.2904922
http://www.cse.msu.edu/
http://dx.doi.org/10.7551/mitpress/7503.003.0021
http://dx.doi.org/10.7551/mitpress/7503.003.0021
http://dx.doi.org/10.7551/mitpress/7503.003.0021
http://dx.doi.org/10.1016/j.acha.2006.03.004
http://refhub.elsevier.com/S0165-1684(23)00382-1/sb41
http://refhub.elsevier.com/S0165-1684(23)00382-1/sb41
http://refhub.elsevier.com/S0165-1684(23)00382-1/sb41
http://refhub.elsevier.com/S0165-1684(23)00382-1/sb42
http://dx.doi.org/10.1214/13-EJS843
http://dx.doi.org/10.1016/J.JMVA.2009.03.005
http://dx.doi.org/10.1016/J.JMVA.2009.03.005
http://dx.doi.org/10.1016/J.JMVA.2009.03.005
http://dx.doi.org/10.1016/J.JMVA.2015.06.012
http://dx.doi.org/10.1016/J.JMVA.2015.06.012
http://dx.doi.org/10.1016/J.JMVA.2015.06.012
http://dx.doi.org/10.1109/TSP.2013.2238935
http://dx.doi.org/10.1109/ICASSP.2013.6638850
http://dx.doi.org/10.1109/ICASSP.2013.6638850
http://dx.doi.org/10.1109/ICASSP.2013.6638850
http://dx.doi.org/10.1109/ICASSP.2013.6638849
http://dx.doi.org/10.1109/ICASSP.2013.6638849
http://dx.doi.org/10.1109/ICASSP.2013.6638849
http://dx.doi.org/10.1109/TSP.2014.2321121
http://dx.doi.org/10.1109/TSP.2014.2321121
http://dx.doi.org/10.1109/TSP.2014.2321121
http://dx.doi.org/10.1109/TSP.2019.2932882
http://dx.doi.org/10.1109/TSP.2019.2932882
http://dx.doi.org/10.1109/TSP.2019.2932882
http://arxiv.org/abs/1804.04713
http://refhub.elsevier.com/S0165-1684(23)00382-1/sb52
http://refhub.elsevier.com/S0165-1684(23)00382-1/sb52
http://refhub.elsevier.com/S0165-1684(23)00382-1/sb52
http://refhub.elsevier.com/S0165-1684(23)00382-1/sb52
http://refhub.elsevier.com/S0165-1684(23)00382-1/sb52
http://refhub.elsevier.com/S0165-1684(23)00382-1/sb53
http://refhub.elsevier.com/S0165-1684(23)00382-1/sb53
http://refhub.elsevier.com/S0165-1684(23)00382-1/sb53
http://refhub.elsevier.com/S0165-1684(23)00382-1/sb53
http://refhub.elsevier.com/S0165-1684(23)00382-1/sb53
http://refhub.elsevier.com/S0165-1684(23)00382-1/sb54
http://refhub.elsevier.com/S0165-1684(23)00382-1/sb54
http://refhub.elsevier.com/S0165-1684(23)00382-1/sb54
http://refhub.elsevier.com/S0165-1684(23)00382-1/sb54
http://refhub.elsevier.com/S0165-1684(23)00382-1/sb54
http://dx.doi.org/10.1109/TKDE.2010.259
http://dx.doi.org/10.1016/j.neucom.2012.01.029
http://dx.doi.org/10.1016/j.neucom.2012.01.029
http://dx.doi.org/10.1016/j.neucom.2012.01.029
http://arxiv.org/abs/1312.6114
http://dx.doi.org/10.1098/rspa.1909.0075
http://dx.doi.org/10.1371/journal.pone.0189208
http://dx.doi.org/10.1371/journal.pone.0189208
http://dx.doi.org/10.1371/journal.pone.0189208
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.6714
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.6714
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.6714
http://yann.lecun.com/exdb/mnist
http://refhub.elsevier.com/S0165-1684(23)00382-1/sb61
http://refhub.elsevier.com/S0165-1684(23)00382-1/sb61
http://refhub.elsevier.com/S0165-1684(23)00382-1/sb61
http://dx.doi.org/10.1016/B978-0-444-63492-4.00010-1
http://dx.doi.org/10.1016/B978-0-444-63492-4.00010-1
http://dx.doi.org/10.1016/B978-0-444-63492-4.00010-1
https://github.com/itayzach/RoMix/
http://dx.doi.org/10.1016/j.acha.2015.06.008
http://dx.doi.org/10.1016/j.acha.2015.06.008
http://dx.doi.org/10.1016/j.acha.2015.06.008
http://refhub.elsevier.com/S0165-1684(23)00382-1/sb65
http://refhub.elsevier.com/S0165-1684(23)00382-1/sb65
http://refhub.elsevier.com/S0165-1684(23)00382-1/sb65
http://refhub.elsevier.com/S0165-1684(23)00382-1/sb65
http://refhub.elsevier.com/S0165-1684(23)00382-1/sb65
http://dx.doi.org/10.1007/978-3-642-38652-7
http://refhub.elsevier.com/S0165-1684(23)00382-1/sb67
http://refhub.elsevier.com/S0165-1684(23)00382-1/sb67
http://refhub.elsevier.com/S0165-1684(23)00382-1/sb67
http://refhub.elsevier.com/S0165-1684(23)00382-1/sb67
http://refhub.elsevier.com/S0165-1684(23)00382-1/sb67
http://dx.doi.org/10.1145/355744.355745
http://dx.doi.org/10.5069/G9445JDF
http://dx.doi.org/10.5069/G9445JDF
http://dx.doi.org/10.5069/G9445JDF
http://dx.doi.org/10.1109/CAMSAP45676.2019.9022614
http://dx.doi.org/10.1109/CAMSAP45676.2019.9022614
http://dx.doi.org/10.1109/CAMSAP45676.2019.9022614
http://dx.doi.org/10.1007/978-3-642-04898-2_455
http://dx.doi.org/10.1007/978-981-10-0530-5_2
http://refhub.elsevier.com/S0165-1684(23)00382-1/sb73
http://refhub.elsevier.com/S0165-1684(23)00382-1/sb73
http://refhub.elsevier.com/S0165-1684(23)00382-1/sb73
https://keras.io

	Graph signal interpolation and extrapolation over manifold of Gaussian mixture
	Introduction
	Graph Signal Processing Overview
	Graph Signal Interpolation and Extrapolation
	Literature Review
	Motivation
	Main Contributions
	Outline

	Preliminaries
	Graphs and Graph Signals
	The Manifold Assumption
	Reproducing Kernel Hilbert Space

	Graph-Signals as Functions in RoMix
	The Gaussian Kernel and its Associated Eigenfunctions
	Manifold of a Gaussian Mixture
	Example for Approach 3.1: Modeling the Swiss Roll with a GMM in Ambient Space
	Example for Approach 3.2: Modeling MNIST with a GMM in a Latent Space

	Graph-Signals Interpolation and Extrapolation Using RoMix
	From Infinite to Finite Set of Coefficients
	The Proposed Interpolation and Extrapolation Algorithm
	Parameters Selection
	Computational Complexity Analysis

	Experimental Results
	Toy Examples: Laplacian Eigenfunctions
	Example 1: Uniform samples over a 1D grid
	Example 2: Uniform samples over a 2D grid
	Example 3: Uniform samples over a Swiss roll

	Toy Example: Two-Moons Semi-Supervised Classification
	Real World Examples
	Baseline methods
	Handwritten digits classification
	Bulgaria Beacons

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A. Elaborated Reproducing Kernel Hilbert Space Theory
	Spectral theorem for the kernel operator

	Appendix B. Example: VAE Computational Complexity Analysis
	References

